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The objective of the current study is developméra coupled orthogonal
curvilinear/Cartesian grid solver. The solver regsia thin orthogonal boundary layer
grid and a non-uniform Cartesian grid to resolhelibundary layer on a solid surface
and the flow region away from the surface, respebti Flows inside the orthogonal
boundary layer and Cartesian background gridsaved by different CFD solvers
which are coupled by an overset grid method. SUG@AE&R writes the grid domain
connectivity information into a file that identifiggrid points necessary for the overset
grid interpolation. In order to satisfy mass coma@on across the overlapping region, the
pressure Poisson equations and the overset inatigpoequations are encompassed from
both of the solvers and solved simultaneously biexative method.

Accuracy of the coupled orthogonal curvilinear/@aian grid solver was
evaluated in terms of flows past circular cylindeesause the orthogonal boundary layer
grids can be generated easily due to its simpladytal shape. In this study, additional
numerical simulations were also performed by thegimal orthogonal curvilinear and
Cartesian grid solvers in order to obtain the bematk data to compare with the results
of the coupled orthogonal curvilinear/Cartesiam giolver.

The coupled orthogonal curvilinear/Cartesian galver was applied to steady
and unsteady laminar flows at Re = 40 and 200)esiphase turbulent flows at
subcritical Re = 3900 and supercritical Re = 5xdifd 1x16, and two-phase flows at
(Re, Fr) = (2.7x1% 0.20), (2.7x18 0.80), and (4.58x%01.64). Those numerical results
are in good agreement with the experimental andenigad results in the literature.

Effects of the grid resolution on the numericauteswere analyzed in this study.
The analysis showed the more accurate resolutioeaf-wall regions by the boundary
layer grids for the coupled orthogonal curvilin€artesian grid solver. It also presented
the similar trends of the flow at the subcritica Rith the vertical resolution to those

observed in the literature.
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The coupled orthogonal curvilinear/Cartesian galver predicted much delayed
separations of the boundary layers at both therstipeal Re, which caused the narrower
wakes and the shorter recirculation regions thasdtlat the subcritical Re. The features
of surface pressure corresponded to the postpapedations.

The solver developed in this study showed the amtiends in the two-phase
flows at Fr = 0.20 and 0.80 to those observed bypt#st numerical studies. The trends of
the vortex shedding, deviating shear layers, aac#panded wake on the free surface
are more prominent in the flow at Fr = 0.80 thaat it Fr = 0.20.

The mean flow on the free surface at Fr = 1.64 shib high magnitudes of the
streamwise vorticity and the transverse velocitlyiolr are responsible for the attenuation
of periodic vortex shedding. The difference of ¢jnadients of two Reynolds shear
stresses and the streamwise vortex stretchindhammain mechanism for generation of
the mean streamwise vorticity on the free surfataddition, the source terms due to the
strong streamwise vorticity mainly generate bo#im¢verse and vertical vortices on the
free surface.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Computational fluid dynamics (CFD) solvers with Inigdelity are required to
perform accurate simulations of turbulent flowsclSCFD solvers should include high-
order numerical schemes, accurate turbulence nmajelnd good scalability of high
performance computing (HPC). Simplicity of genargtcomputational grids is also
important for complex geometries such as thoseregbden ship hydrodynamics.
Generation of a body-fitted structured grid arotimelcomplex geometry surface is
difficult, and mesh quality, namely mesh orthogayand mesh smoothness, often
becomes an issue. Extensive researches made fguahty of the structured grids can
be reviewed in Zhang et al. (2006, 2012). On tihemwohand, unstructured grids show
greater flexibility to geometry shapes and areexdsi generate around the complex
surfaces than the structured grids (Mavriplis, J98ibwever, implementation of high-
order numerical schemes and accurate turbulencelssdch as large eddy simulation
(LES) is difficult to the unstructured grid solvdBaraeni and Hill, 2010; Mahesh et al.,
2004). CFD solvers using a Cartesian grid withramersed boundary method (IBM)
involve extremely easy grid generation and allowlementation of high-order
numerical schemes easily (Mittal and laccarino,22@ullbrand et al., 2001). Also, HPC
scalability of the Cartesian grid solvers is bethan that of the curvilinear structured
grid solvers (Bhushan et al., 2011). Because afettieatures, the Cartesian grid solvers
with IBM are well suited for accurate numerical siations of turbulent flows, such as
LES (Gullbrand et al., 2001; Moin, 2002; Balara@)2, Ramakrishnan et al., 2009;
Yang and Stern, 2009). However, the Cartesianggiders require very large grids to
adequately resolve boundary layers at high Reynuldsbers. Adaptive local grid

refinement near the solid wall can lead to redunctbthe grid size (laccarino et al.,
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2004; Ghias et al., 2007), but still the near-wgaitl resolution is very expensive.
Moreover, the fine near-wall resolutions requirep@mall time steps to simulate
unsteady or developing flows accurately. Thuss itmportant for the Cartesian grid
solvers to implement a method to resolve the visdmundary layers around the solid
surfaces appropriately.

A wall function (WF) approach (Stern et al., 2088h be used to capture effects
of the boundary layers in the framework of an IB&éd Cartesian grid solver. In
Bhushan et al. (2011), the simulation was perforfeed surface combatant model
DTMB 5415 in the straight-ahead condition by usan@artesian grid solver with the WF
method. The numerical results show that the WF atkltas limitations in accurately
predicting the flow separation and the turbulengamngities. This is expected since the
WF methods are more suited for body-fitted cureéingrids in which uniform first grid
spacing can be maintained throughout the solichsatrf

A coupled curvilinear/Cartesian grid method wasppsed by Yang and Stern
(2009) as an alternative approach to resolve thadery layers. In this method,
curvilinear structured grids are used to resoleeltbundary layers on the solid surfaces
and Cartesian grids to compute the flow regionsobthe boundary layers. Different
CFD solvers are applied to the body-fitted curaln grids and the Cartesian background
grids. Those solvers can be coupled using the yrabnditions, a hybrid grid method,
or an overset grid method.

Coupling multiple CFD solvers by the boundary ctiodis requires two things
(Schluter et al., 2005b). The first is to defineiaterface which enables communication
and exchange of the flow variables between theessl\Previous work (Shankaran et al.,
2001; Schluter et al., 2003a; Schliter et al., B)®&s established the algorithms which
specify the interface and allow information exchabgtween two or more CFD solvers.
The second thing for the coupling is to specifydbperopriate boundary conditions used

by the solvers at the interface. Schluter and Ri(R005), and Schliter et al. (2004,
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2005a, 2005b) discussed the boundary conditiotieeanterface to couple an LES flow
solver and the Reynolds Averaged Navier Stokes (BAfdMw solver. Schltter et al.
(2005b) validated the developed coupling methodafflow in an axisymmetric
expansion and a swirl flow at an expansion withilasequent contraction and
demonstrated its applicability in a turbomachinesge. However, this approach is not
appropriate for a coupled curvilinear/Cartesianl gnethod because it requires the plane
interface between the computational domains foh satver.

Zhang and Wang (2004) proposed a hybrid adaptivee§ian/quad/triangular
grid method to solve two-dimensional flows with nmay objects. In the hybrid grid
method, a body-fitted structured grid is generditrstl near a solid body to resolve the
viscous boundary layer. An adaptive Cartesian igrttien generated to cover the whole
computational domain. The Cartesian cells whichrlapethe body-fitted grid are
removed from the computational domain, and theig@poduced between the body-
fitted grid and the Cartesian grid. The triangulastructured grids are used to fill the
gap. In the dynamic moving boundary flow problethg, body-fitted grid moves with the
moving body, whereas the Cartesian grid remairi®satry. Meanwhile, the triangular
unstructured grids are deformed according to theam@f the moving body with a
spring analogy approach (Batina, 1991). Zhang aady\(2004) demonstrated the
hybrid grid generation approach and the developee-integration algorithm for a
supersonic flow around a cylinder and inviscid flamd turbulent flow over an
oscillating NACA0012 airfoil. Zhang et al. (200Qtended the above hybrid grid
generation method to morphing bodies for two-dinamed external bio-fluid
simulations. Delaunay graph interpolation appro@dah et al., 2006) was implemented
to improve the efficiency of the grid generatiordda deal with very large motions. The
extended hybrid dynamic grid generation method vedislated for several external bio-

fluid problems with multiple bodies. However, thdsdrid grid approaches were
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developed for simulations using finite volume methoAlso, they can be performed only
for two-dimensional flows, and the extension te#idimensional cases is difficult.

In the overset grid methods, there is no need tegrids at the interface of the
neighboring grid blocks (Baker, 2005). This lackaofy constraint at the grid block
interfaces allows both body-fitted curvilinear gridnd Cartesian background grids to be
constructed easily. Moreover, the overset grid wethdo not need to either deform or
regenerate the grids to solve the problems evammitving objects. Therefore, good
grid quality can be maintained during the entiraidation process. However, there are
two issues to implement the overset grid methadsaig additional module is required to
interpolate information from one grid block boung&r another; (2) the interpolation can
violate conservative nature of the governing equetisolved in the CFD solvers. Those
issues should be resolved to couple the curviligedrsolver and the Cartesian grid
solver using the overset grid interpolation.

The Structured, Unstructured, and Generalized ev&sd AssembleR
(SUGGAR) code was developed as an overset griadrddgerogram by Noack (2005).
The SUGGAR code can create a single compositefrgnd multiple overlapping
structured, unstructured, and/or general polyheghidk for both node-centered and cell-
centered flow solvers. It has been incorporatea @xisting flow solvers, and the solvers
with the overset grid capability have been validdte several problems including static
or dynamic objects (Pandya et al., 2005; Carricd.e2007; Mulvihill and Yang, 2007,
Koomullil et al., 2008).

1.2 Objective and Approach

The objective of this study is development of apgted orthogonal
curvilinear/Cartesian grid solver. The solver regsia thin structured boundary layer
grid and a non-uniform Cartesian grid to resohelibundary layer on a solid surface
and the flow region away from the surface, respebti The boundary layer grid is so

thin that the grid orthogonality is maintained gwenere inside the grid. The Cartesian

www.manaraa.com



background grid part is solved by a Cartesian Gfd@ solver, which is called CFDShip-
lowa version 6 (V6-IBM hereafter) developed on basis of an immersed boundary
method for ship hydrodynamics. Another CFD soleguiring a body-fitted orthogonal
curvilinear grid is applied into the boundary lageid. This solver is named CFDShip-
lowa version 6.2 (V6-OC hereafter) and has beerldeed from V6-I1BM by Suh et al.
(2011). Therefore V6-OC has the similar architestiorthat of V6-IBM. An overset grid
method is used to couple V6-IBM and V6-OC. In therset grid method, all the flow
variables are interpolated from one grid blockrotaer through the interface between
the boundary layer grid and the Cartesian backgraumin. SUGGAR code writes the
grid domain connectivity information into a fileahidentifies grid points necessary for
the overset grid interpolation. In order to satisfgss conservation across the
overlapping part, a pressure Poisson equationveddn a strongly coupled manner
using the PETSc toolkit (Balay et al., 2012). liststrongly coupled manner, the pressure
Poisson equations and the overset interpolatioateans are encompassed from both
V6-IBM and V6-OC and solved together by an iteratmethod. Thus, both mass
conservation and overset interpolation relationsatesfied in both of the CFD solvers.
The coupled orthogonal curvilinear/Cartesian galyer developed in this study is
named CFDShip-lowa version 6.2.5 (V6.2.5 hereafter)

After the development of V6.2.5, its accuracy isessed by considering several
different flows. Table 1 summarizes all the numarggmulations performed in this
study. Validations of V6.2.5 are carried out imterof flows past a circular cylinder
because orthogonal boundary layer grids can bergtuedue to its simple geometry
shape. In addition, many results about the cirocjéinder flows have been obtained
experimentally or numerically for decades. Thosa dae available in the literature in
order to validate V6.2.5. In this study, additiosahulations using V6-IBM and V6-OC
are also performed to obtain benchmark data talatdiVvV6.2.5. The initial validations

are performed for steady and unsteady laminar flaw®e = 40 and 200, respectively.

www.manaraa.com



Effects of the grid resolution and the domain singhe steady laminar flow are
discussed in terms of the boundary layer grid. Vdl&lations of V6.2.5 are also
presented for turbulent flows past a circular cyéin Numerical simulations are
performed by V6.2.5 with large eddy simulation tdnce modeling for single-phase
flows at Re = 3900, 5xfpand 1x18, and two-phase flows at Fr = 0.2, 0.8, and 1.64.
Those Reynolds numbers and Froude numbers are bagshkd cylinder diameter, the
free stream velocity, and water kinematic viscosityose turbulent flows have been
chosen for the current validation studies becaelsgively many detailed benchmark
results are available from both experimental meament and numerical simulations in
the literature. This study also analyzes effecthefgrid resolution, Re, and the free
surface on the turbulent flows.
Outline

Chapter 2 discusses the mathematical models andrmaahmethods
implemented in V6-IBM, V6-OC, and V6.2.5. Chaptest®ws validation results of
V6.2.5 about single-phase flows past a circulaindgr. The flow behavior varied by Re
is also overviewed. Chapter 4 presents validatsults of V6.2.5 about two-phase flows

past a circular cylinder. Chapter 5 shows ovemtiotusions and future work.

www.manaraa.com



Table 1.1 Summary of numerical simulations

Geometry Fr Re Solver Results

V6-IBM | e steady recirculation

40 V6-OC | e unsteady vortex shedding

V6.2.5 | ¢ comparison with V6-IBM,

V6-1BM V6-0OC, and experimental

V6-OC and numerical results in the
200 literature
V6.2.5 | o effects of boundary layer grid
circular cylinder
- resolution and domain size
single-phase flow
V6-IBM | ¢ LES of turbulent flows
3900 | V6-OC |e comparison with V6-1BM,
V6.2.5 V6-OC, and experimental
5x10 and numerical results in the
literature
V6.2.5
1x10 o effects of grid resolution

o effects of Re

0.20 e LES of turbulent flows
2.70x10 e computation of free surfaces
0.80
circular cylinder e comparison with
V6.2.5
two-phase flow experimental and numerical
1.64| 4.58x10

results in the literature

e effects of free surfaces
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CHAPTER 2
COMPUTATIONAL METHODS

2.1 Cartesian Grid Solver

CFDShip-lowa version 6 is recently developed dsw §olver based on a
combined sharp interface immersed-boundary/levieCaetesian grid method for the
large eddy simulations (LES) of three-dimensionad-phase flows interacting with
moving bodies (Yang and Stern, 2009). The secoddratirect forcing, sharp interface
immersed boundary method in Yang and Balaras (280&ed to treat both stationary
and moving bodies. The fluid-fluid interface is taed using a high-order level-set
method with third-order TVD (Total Variation Dimshing) Runge-Kutta and fifth-order
HJ (Hamilton-Jacobi) WENO (Weighted Essentially Noscillatory) schemes. The
ghost-fluid method (Kang et al., 2000; Liu et aD00) is adopted to treat jump
conditions across the fluid-fluid interfaces, whtre density keeps its sharp jump while
the viscosity is smoothed over a transition banthieysmoothed Heaviside function.

2.1.1 Mathematical Models

CFDShip-lowa version 6 solves Navier-Stokes equatia an inertial reference

frame, by which incompressible viscous flows of twoniscible fluids, e.g. air and

water, are governed:

o o Vu=1V.(cpl+T)+ 2.1)
TR u—p p g .

V-u=0 (2.2)
wheret is the timey is the velocity vectom is the pressure,is the unit diagonal tensor,

p Is the densityg represents the gravity acceleration, and the viscous stress tensor

defined as
T=2S (2.3)

with u the dynamic viscosity arffithe strain rate tensor given by
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S = %[Vu + (Vu)T] (2.4)

where the superscriptrepresents transpose operation.

Interfaces between two immiscible fluids are dedias the zero level set of a
signed distance functiog, or the level-set function. The level-set functismdvanced
by its evolution equation (Osher and Sethian, 1988)

d¢

St @-Np=0 (2.5)

The reinitialization equation (Sussman et al., 3984the level-set function is iteratively

solved to keepp as a signed distance function in the course @hitdution:

a¢
57 T5@) (VoI -1 =0 (2.6)

wherer is the pseudo-time for the iteration af(@,) is the numerically smeared-out

sign function:

b
S = 2.7
60) = s 2.7)

with ¢, the initial value ofp andAh a small amount, usually the grid cell size, to ame
out the sign function.

Each phase of constant density and viscosity caabiy defined by the level-set
function in the computational domain, and sharpgsmf the fluid properties occur at the
phase interface. For simplicity and efficiency, tensity keeps its sharp jump, whereas

the viscosity is smoothed over a transition barrdsecthe interface in this study:

p = pc+ (oL — pc)H(¢P)
(2.8)
1= tig + (U — pe)He(9)
where the subscripts andL represent gas and liquid phase, respectively stdmvise

Heaviside function is defined as:
(1 if ¢=0
H(g) = {o if $<0 (2.9)

The smoothed Heaviside function (Sussman et é4)118
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1 if ¢p>¢
_ )1 ¢ 1 . mh\] .
H.(¢) = > 1 +;+Esm (T)] if |¢p|<e (2.10)
0 if ¢p<-—¢

whereg is the transition band where the viscosity is stned. In this study, the level-set
function is defined as negative in the air and gpgesin the water.
Since the fluids considered here are viscous anghase change occurs, the

velocity across the interface is continuous:

[u =0 (2.11)
where [-] indicates the jump at the interface, f,e—fg' for a variableg with the
superscript denoting interface.

The exact jump condition for stress is
[n- (—pI + p(Vu+ (Vu)™)) - n| = ok (2.12)
wherego is the coefficient of surface tensionis the unit normal vector to the interface,

andx is the local curvature on the interface. Thosarggadc properties can be estimated

readily from the level-set function:

_ Ve
n= Vo] (2.13)
AL

The gravity term can be removed from Eq. (2.1)rmprporating the gravity into

the jump condition as

[n- (=pal + p(Vu+ (Vw)")) -n|=ox+[p]X- g (2.15)
wherepq represents the dynamic pressure (for simpligitg, used hereafter)y]is the
density jump at the interface, akds the position vector normal to the referenceplaf
zero hydrostatic pressure.

With a continuous viscosity and velocity field, thteess jump conditions Eq.

(2.12) reduce to
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[p] =p.L—p;=-ox—I[plX g (2.16)

In the LES approach adopted into CFDShip-lowa wer§, the Navier-Stokes
equations are spatially filtered such that thedaemergy carrying eddies are resolved
and the small-scale, dissipative eddies are modsledsubgrid-scale (SGS) model. The
following equations can be obtained after applymgfilter operation to Egs. (2.1) and
(2.2):

Jdu

1 1
A nu-Viu=——-Vp+_-_V. U AL Y I VAR
5% +u-Vu pr+pV u(Vu+ (Vu)")]-Vv-t (2.17)

V-u=0 (2.18)

Note that the gravity acceleration is not includeé&q. (2.17) and it is assumed that the

gravity term is incorporated into the jump conditior the stress, Eq. (2.16).denotes

the filter operation on a variabletf= (uu) — (u)(u) is the SGS stress tensor, whose
deviatoric part is parametrized by following the &yarinsky procedure (Smagorinsky,

1963) as:
1 —
T— §trace(f)l = —2v;S (2.19)

The turbulent eddy viscosity is defined as

v, = CA%[S] and IS| =255 (2.20)
The model paramet& in the eddy viscosity definition (2.20) has todetermined to
close the equations. In CFDShip-lowa version 6 Litgrangian dynamic SGS model
(Meneveau et al., 1996) is used as it can handiglax geometries without the
requirement of homogeneous direction(s). Theretege,(2.17) can be rewritten as the
following form

du

Fr +u-Vu = —%v;a + %v uVa+ (V)] + V- [ve (Vi + (Vi) 7)) (2.21)

with the trace of SGS stress tensor incorporatexjn
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2.1.2 Numerical Methods

A finite difference method is used to discretize Navier-Stokes equations on a
non-uniform staggered Cartesian grid, in whicheéhmemponents of velocity (u, v, w) in
the X, y, and z directions are defined at centecelb faces normal to their own
directions and all other variables ¢, p, u, v;) are defined at cell centers. Fig. 2.1 shows
the staggered arrangement of the variables on dlimensional x-y grid.

A four-step fractional-step method (Choi and Mdifi94) is employed for
velocity-pressure coupling, in which a pressuresfam equation is solved to enforce the
continuity equation. For time advancement, a se@ayddr semi-implicit scheme is
adopted to integrate the momentum equations wélsétond-order Crank-Nicolson
scheme for the diagonal viscous terms and the seaater Adams-Bashforth scheme for
the other viscous terms and the convection terins.pfocesses in the four-step

fractional-step method are as follows:

1. Predictor:
ﬁ- —_ u’-l 1 1 |
=7 AT AT + (M + ) — Gradi (™) (2.22)
2. First corrector:
u; - ai n
Y Grad;(p™) (2.23)

3. Pressure Poisson equation:

O Grad,qrtty = L2 2.24
axi rad¢ip _At 6xi ( ' )
4. Second corrector:
ulttl —
lA—tl = —Grad;(p"*1) (2.25)

where superscript denotes time step, subscript 1, 2, 3 represeniscoordinate, and
andC denote terms treated by the Adams-Bashforth andkENicolson schemes,

respectively, i.e.,
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A=-u-Vu+ %v (VT + V- [ve (V)T (2.26)

C= %\r [u(Va)] + V - [v, (V)] (2.27)

4; andu; are the first and second intermediate velocitiespectivelyGrad(p) is a
pressure gradient term defined at the center efldace (collocated withth velocity
component). The surface tension and gravity teronsal appear in Eq. (2.22) explicitly
since they are incorporated into the pressure gnadermGrad(p) through the jump
condition across the interface. For instance, as/shn Fig. 2.2, the following definition
of the pressure gradient in the x direction canded to implement the jump condition
given by Eq. (2.16):

Grad,(p)is1n; = ﬁi:/z’j (Pisrj — [P]Hi+1,i)x— (pi; — [plH;)
_ 1 (pi+ry —pij) — [P1(Hisa; — Hi )

ﬁi+1/2,j Ax

(2.28)

whereH is the Heaviside function defined in Eq. (2.9 firessure jump across the
interface between cell centersjf and { + 1,j) is based on Eq. (2.16):

[p] = —ox’ —[pl(x'gx +¥'gy +2'9,) (2.29)
with (X, y', 2) the interface position vector normal to the refere piezometric plane.

The cell face density is defined as

Pi+1/2,j = PLOir1/2) + Pc (1 - 9i+1/2,j) (2.30)
with
1 if ¢i,j >0 and ¢i+1,j >0
0 if ¢i,j <0 and ¢i+1,j <0
bij
Oir1/pi =7 1— if ¢,;=20 and ¢,;<0 2.31
U2 ||+ |piva ] (231)
Dis1
P f <0 and gyuq; =0
Ui j| + [Biva
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It is evident from the definition of the HeavisifisnctionH that Eqgs. (2.28) and (2.30)
recover their usual one-fluid forms when the cehiters i, j) and (+1,]) are in the same
phase, i.e. either air or water.

To solve Eq. (2.22), the convection term and difngerm have to be
discretized. An arithmetic mean is used to obtaillnes of velocity components, density,
and viscosity at locations where these values atréefined from the neighboring
collocation points with the exception of the ingarifl density as defined by Eq. (2.30).
The diffusion and convective terms are discretizgthe standard second-order central
difference scheme and a third-order QUICK (Quadrdpwind Interpolation for
Convective Kinematics) scheme (Leonard, 1979),eesgely. As shown in Fig. 2.8
represents a general velocity component, and ardift index systeni,(J) than that in
Fig. 2.1 is used to indicate the staggered variabngement. Using, (u®) as an

example, the discretization can be written as
1
Vx(utb) = H (U1+1/2,]q)1+1/2,] - U1—1/2,]q)1—1/2,]) (2-32)

whereU means a cell face advectingelocity component from an arithmetic mean.
With an upwind procedure, the right side cell flog, ®,.1/2;, can be evaluated using

the QUICK scheme as follows:

1
g(_(bl—l,] + 6(1)1’] + 3q)1+1,]) lf U1+1/2’] 2 0
@ry1/2) = 1 (2.33)
g(_q)HZ,] + 6q)l+1,] + 3(1)1’]) lf UI+1/2,] < 0
on a uniform grid. Lagrangian polynomial interp@atcan be used to obtain the non-
constant coefficients in the above equation for-nopiiorm grids.
To invert the momentum equations due to the imiiieatment of the diagonal

viscous terms, the approximate factorization meitBshm and Warming, 1976) is used.

Eq. (2.22) can be rewritten in the following form:

At
1-2v (V)| 0; = ul* + At(RHS)? (2.34)
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where(RHS)" includes all terms evaluated explicitly in Eq.22). In order to illustrate
the factorization method, a uniform grid is used terms due to SGS stresses are not
included in Eq. (2.34). With the approximate faation method, the above equation
can be expressed as:

-5 el - ey e

=uj' + At(RHS)}

A splitting error of orde©(At®) is introduced into the system in this factoriaati
procedure, which does not affect the second-oetepbral accuracy of the overall
algorithm.

The pressure Poisson equation, Eq. (2.24), isatiged using a standard second-
order central-difference scheme. On a staggerekl tipe right-hand side of Eq. (2.24)
can be computed readily using the cell face vefamimponents. The left-hand side can
be discretized by applying the divergence operatéiq. (2.28) (Liu et al., 2000). In the

x direction of a uniform grid,

1 1 (P?++1%j - Pf,lfrl) — [p)(Hi41,; — Hij)

i AX Pit1/2,) Ax

1
n+1
Ax Grad,(p )H%

2.36
1 i —plY Ipl Hiwj—Hiy (2.36)

_(Ax)z ﬁi+1/2,j (Ax)? ﬁi+1/2,j

where the second term due to the pressure jumptaond moved to the right-hand side
of the pressure Poisson equation. Since the letélnction is solved before the pressure
Poisson equation, the position and curvature ofrttezface and then the pressure jumps
through the interface can be computed in advantes,Tre-evaluation of the right-hand
side is not necessary.

The level-set evolution and reinitialization eqoas are solved using third-order
TVD Runge-Kutta scheme (Shu and Osher, 1988) mtithe advancement and fifth-
order HJ-WENO scheme (Jiang and Peng, 2000) faspghgal discretization. The local

(narrow band) level-set method by Peng et al. (1898sed to identify a narrow band of
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several grid cell widths around the zero leveladegach time step, where the level set
evolution and reinitialization equations are solvede to the narrow band method, the
additional solution of the level-set function witie current high order schemes does not
pose a significant overhead to CFDShip-lowa vers§ion

A sharp interface immersed boundary method by YaryBalaras (2006) is used
to treat an immersed body on a non-uniform Cantegia. In this approach, the grid
generation for complex geometries is trivial sitioe requirement that the grid points
coincide with the boundary, which is imperative body-fitted methods, is relaxed;
while the solution near the immersed boundarygésmstructed using momentum forcing
in a sharp-interface manner. Since the detailedgahare is given in Yang and Balaras
(2006), and Yang and Stern (2009), the overviesuramarized here.

The first step is to establish the grid-interfagkation with a given immersed
boundary description, such as parametrized curkfatsior triangulation. In this step, all
Cartesian grid nodes are split into three catega@i®wn in Fig. 2.4: (1) fluid-points,
which are points in the fluid phase; (2) forcingrs, which are grid points in the fluid
phase with one or more neighboring points in thel ghase; (3) solid-points, which are
points in the solid phase. CFDShip-lowa versior &pplied to all grid points without
distinguishing fluid, forcing, or solid points. Tledfect of the immersed boundary on the
flow is mimicked by introducing a discrete forcifghction to the momentum equation,
Eq. (2.22). A provisional velocity field; for the first intermediate velocity 1 solved
first with all terms treated by the Crank-Nicolsstheme in Eq. (2.22) using the explicit
forward Euler scheme; then the discrete forcingfiom is evaluated by substitutirig
with u (Kim et al., 2001). The velocity; is computed by a linear interpolation scheme
given in Yang and Balaras (2006). In the lineagrpblation scheme, an interpolation
stencil is setup for a forcing point by three psirthe projection of the forcing point onto
the interface (point 1 in Fig.2.4) and two neighbgffluid points (points 2 and 3 in

Fig.2.4). The provisional velocity is used for psi2 and 3. Point 1 uses the local
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velocity of the immersed body that is already kndvam the prescribed or predicted
motion

The time stept is restricted by the CFL (Courant-Friedrichs-Lewghdition,
gravity, and surface tension. With a CFL restrictad 0.5, the following relationship can

be established as discussed in Kang et al. (2000).

-1
Cepr + \/(Ccﬂ)z + 4(Gcﬂ)2 + 4(5cfl)2

At <0.5 > (2.37)
with the convective time step restriction
C.r; = max M+M+M (2.38)
crt Ax Ay Az '
the time step restriction due to gravity
o= [l 9], 1ol (2.39)
crl Ax Ay Az '

and the time step restriction due to surface tensio

olk|
SCfl = \/ (240)

pe(min(Ax, Ay, Az))z

One of the major objectives of the developmentBDShip-lowa version 6 is to
make use of the on-coming petascale computers ravitlp fast turnaround for
simulation-based design in ship hydrodynamics.cigfficy and sustainable development
of the solver are among the major consideratiorisersoftware design. Modern
programming language Fortran 95 is chosen and ailized approach is followed for
the code development.

The simple topologic structure of Cartesian grgiavorable for coarse-grain
parallelization. The parallelization is done vidanain decomposition technique using
the Message Passing Interface (MPI) library. A $entimmain decomposition technique

is used in CFDShip-lowa version 6 where the Caategrid is divided into uniform
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pieces, each of which resides in one processomapkoad balance can be achieved
except for a small amount of overhead due to iateriand immersed boundary
treatment, which may be unevenly distributed ovecessors.

A parallel tri-diagonal system solver is used with approximate factorization of
momentum equations, no iterations are needed éointlersion of the momentum
equations. For the pressure Poisson equationhéyhefficient, scalable multigrid-
preconditioned Krylov subspace solver from PETSleen included in the code.
Usually, the Poisson solver takes most of the GRId tn a single time step.

Parallel /0 based on MPI 2 is implemented. Instefathe usual approaches that
one process collects all data from all processdsnaite to one file, or, each process
write its data to its own file, in the current apach all processes write its data to one
single file, which is highly scalable and can geaimplify the I/O operation and
minimize the post-processing overhead.

2.2 Orthogonal Curvilinear Grid Solver

The original CFDShip-lowa version 6 has been exadrdto orthogonal
curvilinear coordinate systert( &, &3) by Suh et al. (2011). The CFD solver is currently
developed as CFDShip-lowa version 6.2. All govegrequations are expressed in the
orthogonal curvilinear coordinate system. The manr@nequations solve the
contravariant velocity componenis (i = 1, 2, 3) in the directions di, &, andds,
respectively. Since the computational domain isrétsized by an orthogonal curvilinear
grid fitted to the body shape, the immersed boundethod of CFDShip-lowa version 6
is no longer needed and the no-slip condition enbibdy surface has been adopted.

2.2.1 Mathematical Models

The governing equations in CFDShip-lowa versiong#e€the unsteady, three-

dimensional, incompressible Navier-Stokes equatiartsen in the orthogonal

curvilinear coordinate system:
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5 ou;
i =+ VO] - —vo)[rl,]
(2.41)
_ 1 (')p Tij
paf()+gl+H(1)[u]u] p] H(])[uuj p]
V@)[ul =0 (2.42)

whereg; (i = 1, 2, 3) is the gravity vector in the directidrtlve orthogonal curvilinear

coordinateZ, p the densityp the pressure, artdhe time. In addition,

H;(j) = hlh % (2.43)
ih; 90¢;
YOU =750 (1) (2.49

andod(i) = hio& andh; = ox/o& with x a Cartesian coordinate following Pope (1978).
The Jacobian of the coordinate transformation fsed asJ = hhjhy,. The viscous stress

tensorr; is defined as follows:

du; (')u]

“lozy TaEw

wherey is the dynamic viscosity an¥ is the Kronecker delta function.
The fluid-fluid interface is tracked as the zeredkset of the level-set function.

The level-set function is evolved by the followieguation:

a¢ d¢
ot TYED

=0 (2.46)
The reinitialization equation (Sussman et al., 1994teratively solved to keep the level-
set function as a signed distance function.

Like CFDShip-lowa version 6, the density and vistyoare defined according to
the level-set function, and sharp jumps of thedfloioperties occur at the interface. Thus,
the density keeps its sharp jump while the visgasismoothed over a transition band
across the interface.

In order to handle fully inhomogeneous turbulerg) et al. (2011) adopted the

Lagrangian dynamic SGS model based on Sarghiri €999) as it averages the model
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coefficient along the flow pathline (Meneveau et 8996). In this LES approach, the
Navier-Stokes equations are spatially filteredhsd the large, energy-carrying eddies are
resolved while the small-scale, dissipative eddresmodeled by the SGS model. The

following equations can be obtained after applymgfilter operation to Eq. (2.41):

o, 1
g V()] - V(i)[fij] - ;V(i)[fij]
(2.47)

1 dp Tii I T
=550 91+H(1)[u]u] ?] j]_Hi(])[uiui_%_Tij

with 7;; = uS; ; andt;; = v, 1;; with v the turbulent eddy viscosity, respectively.
2.2.2 Numerical Methods

CFDShip-lowa version 6.2 implements the same nuwakmethods as those of
CFDShip-lowa version 6. Therefore, a finite-diffiece method is used to discretize the
governing equations on a non-uniform staggeredgadhal grid. The contravariant
velocity components are defined at centers offaebs in their orthogonal curvilinear
coordinate directions. All other variables are dedi at cell centers. A semi-implicit time
advancement scheme is used to integrate the momesguations with the second-order
Crank-Nicolson scheme for the diagonal viscous $eamd the second-order Adams-
Bashforth scheme for other terms. A four-step fometl-step method (Choi and Moin,
1994) is employed for velocity-pressure couplimgwhich a pressure Poisson equation is
solved to enforce the continuity equation.

The convective terms are discretized using thk-bitder Hamilton-Jacobi
Weighted-ENO (HJ-WENO) scheme (Jiang and Peng, 200@ other terms are
discretized using the second-order central diffeeestheme. A semi-coarsening
multigrid solver from the HYPER library (Falgoutat, 2006) is used to solve the
pressure Poisson equation.

Both the level-set evolution and reinitializatioquations are solved using the

third-order TVD Runge-Kutta scheme (Shu and Osi@88) for time advancement and
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the fifth-order HJ-WENO scheme (Jiang and PengQp@fr spatial discretization. The
local level-set method by Peng et al. (1999) defam@arrow band around the fluid-fluid
interface, in which the level-set and reinitialinatequations are solved.

2.3 Coupled Orthogonal Curvilinear/Cartesian GridvEr

CFDShip-lowa version 6.2.5 is a coupled orthogauoavilinear/Cartesian grid
solver based on CFDShip-lowa version 6, a Cartegi@hsolver, and CFDShip-lowa
version 6.2, an orthogonal curvilinear grid solN®th of which are for LES of two-
phase incompressible flows as discussed above. GQipB&wva version 6.2.5 requires
two grid blocks: a thin orthogonal boundary layaddo resolve a boundary layer on a
body surface and a Cartesian background grid tqoaterthe flow region out of the
boundary layer grid. Then CFDShip-lowa version®&pplies CFDShip-lowa version
6.2 and CFDShip-lowa version 6 into the boundaygiayrid and the Cartesian
background grid, respectively. Those solvers atpleal by the grid connectivity
information given by Structured, Unstructured, &weheralized overset Grid AssembleR
(SUGGAR) code (Noack, 2005).

2.3.1 Mathematical Models

Since CFDShip-lowa version 6.2.5 executes CFD Stwyalversion 6 and
CFDShip-lowa version 6.2 simultaneously, the cod@elver solves the continuity
equations and the momentum equations in a Cartes@dinate system and an
orthogonal curvilinear coordinate system, i.e. Eg4l), (2.2), (2.41), and (2.42).

The interface between two immiscible fluids is defl as the zero level set of the
level-set function. The level-set function is adw@ah by the evolution equations: Eq.
(2.5) and Eq. (2.46). The reinitialization equasiavritten in the Cartesian coordinate
system and the orthogonal curvilinear coordinastesy are iteratively solved to keep the
level-set function as a signed distance functi@achgphase of the constant density and

viscosity is defined according to the level-setchion.
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Since CFDShip-lowa version 6.2.5 implements an biE$hod in each solver, the
Navier-Stokes equations in both of the solversspatially filtered such that the large,
energy-carrying eddies are resolved while the ssealle, dissipative eddies are modeled
by an SGS model. The Smagorinsky model (Smagorjrid§3) is used to model the
SGS stress tensor in Eq. (2.17) and Eq. (2.47) Mdael parameter, such @sn Eq.
(2.20), is determined as a constant in CFDShip-legraion 6.2.5 because it was found
that evaluation of the parameter by a dynamic mie@els to large differences in the
turbulent eddy viscosity across the overlappingoregue to the secondary filtering
(Bhushan et al., 2011). In this study, the modehpeeter is equal to 0.03.

2.3.2 Numerical Methods

The numerical methods in CFDShip-lowa version 6a2ésthe same as those in
its component solvers, i.e. CFDShip-lowa versian@ CFDShip-lowa version 6.2. A
finite difference method is used to discretizedbgerning equations on the overlapping
non-uniform staggered grids. The four-step fraclestep method of Choi and Moin
(1994) is employed for velocity-pressure couplimgwhich pressure Poisson equation is
solved to enforce the continuity equation. A semplicit time advancement scheme is
adopted to integrate the momentum equations wélsétond-order Crank-Nicolson
scheme for the diagonal viscous terms and the seaater Adams-Bashforth scheme for
the other viscous terms and the convection terins.diffusion terms are discretized by
the standard second-order central difference sch&hseconvective terms are
discretized by the third-order QUICK scheme (Lednd®79) in both the curvilinear
grid solver and the Cartesian grid solver becas@verset interpolation in CFDShip-
lowa version 6.2.5 give the boundary conditionsodmto grid layers, as discussed later.

Both the level-set evolution and reinitializaticquations are solved using the
third-order TVD Runge-Kutta scheme (Shu and Osi@#8) for the time advancement
and the third-order QUICK scheme for the spatiatditization due to the same reason as

the momentum equations. The local level-set mebiyodeng et al. (1999) is used to
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identify a narrow band of several grid cell widdreund the fluid-fluid interface at each
time step, in which the level-set and the reination equations are solved.

Fig. 2.5 (a) shows a boundary layer grid overlagpuith a Cartesian background
grid for CFDShip-lowa version 6.2.5 simulation & past a circular cylinder. As
shown in Fig. 2.5 (a), the whole boundary layedg@are included inside the Cartesian
background grids for all the CFDShip-lowa versioR.b simulations. The grid
connectivity information is obtained by three owtrgrid assembly processes performed
by the SUGGAR code, an overset grid assembly pnognaginally designed for moving
body simulations. At the beginning of the procestes SUGGAR code identifies hole
points within the grids, which are excluded frora ttumerical computations. In Fig. 2.5
(b), the Cartesian grid points highlighted by greenome the hole points because they
are inside the boundary layer grid or the circaldinder. The next step in the overset
grid assembly process is identification of fringens which receive flow variables
interpolated from other grids. Once all the frinments are specified, the final step
searches donor points which interpolate the flonades to the corresponding fringe
points and identifies the interpolation weightshed donor points. Fig. 2.5 (b) and (c)
show the fringe points (blue) and active pointslt@n which the governing equations
are solved. The fringe points provide the Dirichdetindary conditions that the
component solvers of CFDShip-lowa version 6.2.5 Tike details of the overset grid
assembly process in the SUGGAR code are describddack (2005).

Fig. 2.6 shows the overall solution strategy in GRip-lowa version 6.2.5. Since
the current study handles only flow problems wititis bodies, it is sufficient that the
SUGGAR code is executed before the numerical sitiouis. The grid connectivity
information specifies which grid point is the hdienge, or active point, and what the
interpolation weights of the donors are, as deedrétbove. The grid connectivity
information is written in a file which CFDShip-lowersion 6.2.5 reads together with the

input data necessary for the simulation. Since kD Ship-lowa version 6 and
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CFDShip-lowa version 6.2 perform the domain decasitmms using the MPI library,
CFDShip-lowa version 6.2.5 splits all the processoto the solvers which are executed
simultaneously. Since both of the solvers havest#mree numerical methods, the overset
interpolation can be performed in a straightforwarahner; each flow variable is
interpolated after it is solved by the governingatpns. For the velocity components,
the interpolation is also done for the intermediagiocities in the predictor step and the
first corrector step of the four-step fractionagsimethod to obtain the smooth velocity
distribution across the overlapping part of thel driocks.

The overset interpolation in CFDShip-lowa versio?.b is performed for the
variables at the centers of the cells. Thereftre velocity components at the cell centers
need to be calculated from those at the centettseofell faces which are solved by the
momentum equations. Moreover, CFDShip-lowa vers§i@incorporated in CFDShip-
lowa version 6.2.5 as the curvilinear grid solvemputes the contravariant velocity
components along the curvilinear coordinate sygteém ¢). Those contravariant
velocity components have to be transformed intseha the Cartesian coordinate system
(X, ¥, 2) before the overset interpolation. The contravanelocity componentsi( v, w)
at the cell centers are obtained by the arithmm&an. Then, the velocity components

can be transformed into thoge, (v, W) along &, y, z) as

rdx  O0x 0x]
¢ odn 0¢
g ay ay ay|(v

== = =||v
0z 0z 0z
0§ on aC

Similarly,
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(0§ 0§ 067

dx dy 0z
Y\ _|oan o an|(U
visl— — —||lV (2.49)
w dx dy 0z w

a¢ a¢ a¢

l0x dy 0z

The matrix elements in Eq. (2.49) are defined as
¢ 1 (6y dz OJy 62)
ox  J\ond{ aCan

a& 1 (E)x dz O0x 62)
ay ]

=" 7\ana¢ " agan
_ (ax dy 0x 6y)
0z J\onoal alan

on 1 (ay dz 0dy 62)

ox  J\0éEAl 7 o¢
on _1/0x0z 0x0z
7=7 a0~ at%) @50
6n=_1 axay_ax(')y
5= "7 e 3o
0 1(0yoz 0yoz
775 ~an %)
% _ 1oz oxon
y  J\o§on onog
%=1<‘3_x"’_y_a_x"’_y)
z J\oéoan onoé
where
_Ox0dy0dz 0x0ydz 0x0yo0z
~G¢ana; " amaga | a5t an 251

dxdydz O0xdydz 0dxdyoz

9§ dn OndEAl I on I
To satisfy mass conservation across the overlapggidgegion, a pressure
Poisson equation is solved in a strongly coupledmaausing the PETSc toolkit (Balay

et al., 2012). In this strong coupling of the pteesPoisson equation, the pressure
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Poisson equations and the overset interpolatioateans are encompassed from both
CFDShip-lowa version 6 and CFDShip-lowa versiondhd solved together by an
iterative method. Therefore, both the continuityaipn and the overset interpolation
relation are satisfied in both of the CFD solvénghe coupled pressure Poisson
equation, the left hand side (LHS) matrix consigt%-point stencils for the hole points,
9-point stencils for the fringe points, 7-pointratés for the active points shown in Fig.
2.5. The LHS matrix is assembled only at the tirae step as the grids are static,
whereas the right hand side (RHS) vector is updatedery time step.

The pressure Poisson equation at the active pioiitgy. 2.5 is expressed as

d a d
. (n+1) 4 (n+1) 4 (n+1)
AV Ep Grad,P + 3y Grad, P + P Grad,P ]
(2.52)
AV (au 4 av N 6W)
T At \ox Ay 0z
whereAV is the volume of the cell ari™" is the pressure at time step (n+1). For a non-

uniform Cartesian grid, the pressure gradientsangputed as below:

d
a(;raalxp<n+1> (2.53a)
1 1 p 1 1 1 1 + 1 1
=3 Fiv1jk — ijk T i—-1,j,k
Pil By Pulfhil PiifY g 1A%
Cc11 D1 Cc12
d 1
@GradyP(’1+ ) (2.53Db)
_ 1 1 1 1 1 1 4 1 1 P
=5 A i,j+1,k A A i,j.k A i,j—1k
pj+% yj+% p]% yj% P . Yj i3 y]._z
c21 D2 22
4 (n+1)
gGradzP n (2.53c)
_ 1 1 1 1 + 1 1 + 1 1 p
o1 Azk+l i,j,k+1 P Azk+l p_1 AZk 1 i,jk p1 Az 1 i,j,k—1
2 2 2 2 2 2
C31 D3 C22
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where the diagonal component of the LHS matrix s &/(D1 + D2 + D3), and six

non-zero coefficients C1 ~ C6 of the matrix AM*C11, AV*C12, AV*C21, AV*C22,

AV*C31, andAV*C32, respectively. The LHS matrix for the orthogd curvilinear grid

solver is obtained similarly. The pressures afftinge points are interpolated as:

Pijx = W1 XPgy + W2 X Pgy + W3 X Pgz + W4 X Py,

(2.54)

+WS5 X Pys + W6 X Pyg + W7 X Pgy + W8 X Pyg

where (i, j, k) is the fringe point index, d1 ~ dfresent the donor points, and W1 ~ W8

are the interpolation weights of the donor poiatsthe hole points:
Pi,j,k = O
Then, the LHS matrix and the RHS vector are assenirdns below:

Cartesian

Fluid |[-C1.€2.C3.D.C4.C5.C6..] T

Overset—
Blanked—j| =@ e 1 T ) I

......... Lo --W1.-W2.......-W7..-W8....

Fluid—»| . [ .--C1..2..C3..D..C4..C5..C6...

Overset—|....W1.-W2........ -W7.-W8.... | ... 1o

Orthogonal Curvilinear

(2.55)

[ Priuid |
I l:)Overse'[ |
I l:)Blamked |

[ Priuia J
POverset

LHS

RHS

(2.56)

The above linear system is solved using Krylov pabe based GMRES iterative method

with ASM preconditioner.
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Figure 2.1 Arrangement of variables on staggeretie€an grid
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Figure 2.2 Schema of the jump condition treatmentife caséd;; = 1 andHi.1; =0
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Figure 2.3 Schema of the QUICK scheme for the coiwe terms
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Figure 2.4 Grid-interface relation and the integpioin stencil for (point 1, 2, and 3)
solid points;o fluid points;A forcing points

www.manharaa.com




32

s
LT
B
0.6
Q 04F .
02F it .
!
]
]
BiFi
T
T ! I L | ! ! | L 1
0.8 0.6 04 202 0
wD
(a)
T T — L T T T T T
-
fi O‘.’%’c
s | s %e%es
0.6 0.6_ -,':,‘:,‘;.,';.__’
55%
Q 04 Q 04F
02} 02l
0.8 0.6 04 02 0 08 0.6 04 202 0
wD wD
) (c)

Figure 2.5 Overset grids for flow past a circulglircer: (a) Overset grid configuration;
(b) active points (red), fringe points (blue), drae points (green) in the Cartesian
background grid; (c) active points (red) and fripgeénts (blue) in the boundary layer

grid
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CHAPTER 3
NUMERICAL SIMULATIONS OF SINGLE-PHASE FLOWS PAST RICULAR
CYLINDERS

3.1 Introduction

A flow past a circular cylinder is an ideal casevédidate CFDShip-lowa version
6.2.5 (V6.2.5) because it involves an orthogonaliinear boundary layer grid based on
cylindrical coordinate system. Since single-phésed past circular cylinders have been
extensively studied both experimentally and nunadigdor several decades due to
simplicity of its geometry and its importance ofygreering application, there are a lot of
experimental data and numerical results availabtée literature for comparison
purposes. Thus, the viability and accuracy of \®&te initially investigated by
considering the single-phase flows past a ciracyéinder.

The single-phase flow past a circular cylinder bxkkivastly different behavior
depending on Reynolds number (Re = Yased on free stream velocity (U), the
cylinder diameter (D), and kinematic viscosity loé fluid ¢) (Williamson, 1996). A
steady laminar flow exists up to Re49 with a pair of symmetric counter-rotating
vortices attached behind the cylinder. As Re inmesathe laminar flow becomes
unsteady, and periodic Karman vortex shedding appezhind the cylinder. The shear
layer separating from the cylinder becomes unstatéeound Re = 1000, resulting in
three-dimensional turbulent wake. The flow regimpeaRe = 2x1Dis referred to as
subcritical. The subcritical flow involves a themhinar boundary layer attached on the
cylinder surface, transition to turbulence aftgyagation of the boundary layer, a
recirculation region behind the cylinder, and lasgale Karman vortices interacting with
small-scale vortices along the directions of tleevfand the cylinder axis. Between Re =
2x10 and 4x18, the boundary layer reattaches after the separatid separates again

further downstream. The resulting separation-rehatteent bubble and narrower wake
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than the laminar case cause drastically decreased Elow regime between Re = 4%10
and 1x18 is referred to as supercritical. In the supewaitregime, the boundary layer on
the cylinder surface becomes turbulent prior tostygaration (Catalano et al., 2003). The
boundary layer separates much further downstreamaana result, the wake is narrower
than that in the subcritical regime.

Validations of V6.2.5 are performed for two-dimesraal steady (Re = 40) and
unsteady (Re = 200) laminar flows, and subcritifa = 3900) and supercritical (Re =
5x10 and 1x16) turbulent flows past a circular cylinder becarsatively many results
about those flows have been obtained by either naatsimulations or experimental
measurement for decades.

3.2 Numerical Simulations of Two-Dimensional

Laminar Flows

Numerical simulations are performed by V6.2.5 tmpate two-dimensional
steady (Re = 40) and unsteady (Re = 200) lamioarsflpast a circular cylinder.
Additional numerical simulations are also perfornbgdCFDShip-lowa version 6 (V6-
IBM) and CFDShip-lowa version 6.2 (V6-OC) to comparith the V6.2.5 results. The
numerical results obtained by V6.2.5 are also costpavith experimental data and
benchmark numerical results in the literature. &kgerimental data available for Re =
40 include drag coefficient in Tritton (1959) arfthcacteristics of the symmetric counter-
rotating vortices in the wake in Coutanceau andaBd(1977). The benchmark
numerical results of the drag coefficient and tharacteristics of the recirculation region
are available from Dennis and Chang (1970), FoqnfE980), Linnick and Fasel (2005),
Xu and Wang (2006), and Xu (2008). Distributionwofticity magnitude and pressure
on the cylinder surface are predicted and compartdthe numerical results in the
literature, which were obtained by solvers usinmpdy-fitted grid (Braza et al., 1986)

and an immersed boundary method (IBM) (Xu, 200&) eMperimental data is available
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for Re = 200, but ample numerical results are abéelin the literature (Braza et al.,
1986; Russell and Wang, 2003; Linnick and Fasé52&u and Wang, 2006; Le et al.,
2006; Xu, 2008).

Simulation conditions for the Re = 40 and 200 casessummarized in Table 3.1.
Each simulation has its own case name. For bo#scése size of the Cartesian grid for
the V6-IBM simulations is -28 x/D < 20 and -1K y/D < 11. The domain is discretized
by 204x260x%3 points in the streamwise, transvesrstical directions, respectively. An
O-type grid with radius 20D is used for the V6-Qfwlations. Three different grid
resolutions coarse (128x128x3), medium (256x128x8],fine (512x128x%3) in the
radial direction are taken into account for thewdations at Re = 40. The medium grid is
used for the Re = 200 case.

V6.2.5 uses orthogonal curvilinear boundary layet @artesian grids to resolve
the boundary layers on the cylinder and the otbgion away from the cylinder,
respectively. In order to investigate the accumaicy6.2.5, the size and resolution of the
Cartesian background grid are the same as thosdruige laminar simulations by V6-
IBM. For the Re = 40 case, effects of the domaze ¢0.1D, 0.15D, and 0.2D) and grid
resolution of the boundary layer grid on the nuarmesults are studied to identify
limitation of the boundary layer domain size. Asalissed later, boundary layer domain
size of 0.2D is found to be sufficiently thin fdret circular cylinder simulations and will
be used for the rest of the circular cylinder cases

Fig. 3.1 shows X-Y horizontal planes of the gridmdons and the boundary
conditions used by V6-IBM, V6-OC, and V6.2.5. F&-\BM, uniform inlet and
convective outlet boundary conditions are specidedMIN and I-MAX planes,
respectively. Slip wall boundary conditions (izero velocity in the normal direction to
the face and the Neumann condition for the othexctions) are specified at the rest of
the domain boundaries. A sharp-interface immerseshtéary method in Yang and Stern

(2009) is implemented to achieve the boundary dardi on the wall surface. For V6-
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OC, no-slip boundary condition is applied to J-MiMne which is the wall surface.
Dirichlet inlet boundary conditions with unifornteamwise velocity is specified for
150°< 0 < 210° and convective outlet boundary conditionswlgere for J-MAX plane
far away from the wall, wheigis the tangential angle starting from the dowrastre
direction. The bottom and top planes are specdiethe same slip boundary conditions
as that for V6-IBM. For V6.2.5, the Cartesian backmd grid is used to specify the
inlet, outlet, and slip wall boundary conditionfieTboundary layer grid is used to specify
the no-slip boundary conditions on the wall surfadee Cartesian grid and orthogonal
curvilinear grid solvers communicate with each otha the overset boundary condition
at J-MAX plane of the boundary layer grid.

The boundary conditions described above are usednmmon by all the
simulations of flows past a circular cylinder.

A pair of symmetric counter-rotating vortices behthe cylinder at Re = 40 is
predicted by all the solvers on all the grids asnghin Fig. 3.2. Table 3.2 summarizes
characteristics of the recirculation region, sepansangle ©°) from the trailing edge of
the cylinder, drag coefficient ¢}, and pressure ) and friction components (£;) of
Cp predicted at Re = 40 by the current solvers. Talfealso shows the experimental
data and the benchmark numerical results of the B& case in the open literature. The
characteristics of the recirculation region inclitddength (L) from the trailing edge and
location (0.5+a, b/2) of the vortex centers as showFig. 3.3. Fig. 3.3 also shows the
separation angle from the cylinder trailing edgee Ppredictions of vorticity magnitude
(ws) and pressure {Pon the cylinder surface are compared with thecherark
numerical results obtained by body-fitted grid (Bxat al., 1986) and IBM (Xu, 2008)
solvers in Fig. 3.4 and 3.6.

V6-IBM predicts L, b and gwithin 2% of the experimental data, while the
streamwise location of the vortex centers (a) dempredicted by 8% ar@ by 5.4%.

The prediction of Pcompares well with Xu (2008) result which alsosuaa IBM solver,
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but the minimum value is lower than that obtaingdBbaza et al. (1986). The peakis
underpredicted by 9.6% compared to the benchmarienual results. V6-OC

predictions of G are within 5.5% of the experimental data on al ginids. G is

dominated by €, which accounts for 65% of the total. The charasties of the
recirculation region are predicted within 20%, 13%d 5.6% of the experimental data by
40-0OC-C, 40-OC-M, and 40-OC-F, respectively. Thedptions of Rshow no change
between all the grids and the results agree velywith that of Braza et al. (1986). The
peakws improves by 1.63% between 40-OC-C and 40-OC-MhB&-OC-M and 40-
OC-F results compare very well with that of Brazale(1986).

V6.2.5 overpredicts £by 6.8% of the experimental data on all the boupnda
layer grids, but the predictions agree very wethvthe benchmark numerical results. The
predictions of the recirculation region characterssand the separation angle do not
show significant dependence on resolution anddafiziee boundary layer grid. The
results are within 6.6% of the experimental daté iargood agreement with the
benchmark numerical results. The predictionsqd®w no significant change by the
resolution of the boundary layer grid and compag/ well with the result of Braza et al.
(1986). The predictions @fs improve by 3.07% between 40-CS-C and 40-CS-M asd |
than 1.3% between 40-CS-M and 40-CS-F. The restit®-CS-M and 40-CS-F
compare very well with the benchmark numerical itssBoth R andws show no
significant change by the size of the boundaryraysl. Fig. 3.5 shows the streamwise
and transverse components of velocity around ttoelleir cylinder at Re = 40. The
predictions of the flow patterns also present gaificant change by the resolution and
the size of the boundary layer grid.

Overall, the predictions by V6.2.5 compare wellhtihie experimental data and
the benchmark numerical results in the literatdseshown in Fig. 3.6, V6.2.5 shows
10% better predictions of;Rndws than those by V6-IBM on the same background grid

resolution. This indicates that the near-wall rag®resolved properly by the boundary
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layer grids for V6.2.5. The results of V6.2.5 atR40 imply that boundary layer domain
size of 0.2D is sufficiently thin to resolve theumalary layer. Thus, the boundary layer
grid size of 0.2D will be used for higher Re cimutylinder flow cases.

Periodic Karman vortex shedding is predicted byhalsolvers for the Re = 200
case. The V6.2.5 predictions are shown in Figf& fdemonstration. Table 3.3
summarizes mean values and fluctuation amplitudéaind lift coefficient (€) and
Strouhal number (St) at Re = 200. Table 3.3 alsansarizes benchmark numerical
results at Re = 200 available in the literaturecd@hpares within 1.5% between the
solvers and the benchmark numerical results. V6-Bbticts the mean value and
amplitude of G within 5% of the benchmark numerical results, Guamplitude is over-
predicted by 8.5%. V6-OC predictions of meandhd the amplitude are underpredicted
by 9.3% and 2.4%, respectively. The @nplitude prediction is over predicted by 12%.
V6.2.5 underpredicts mean®y 8%. V6.2.5 predicts 2% highep @mplitude and
13.6% higher € amplitude.

V6.2.5 predictions of £and G show up to 13.6% deviation from the benchmark
numerical results but are in good agreement wightbgnchmark data. In the time history
of Cp and ¢ at Re = 200 shown in Fig. 3.8, V6.2.5 and V6-OGteady amplitudes
compare within 3% of predictions by Xu (2008), wéees V6-IBM unsteady amplitudes
are underpredicted by 6%.

3.3 Large Eddy Simulations of Turbulent Flow at a

Subcritical Reynolds Number

Numerical simulations are performed to computerlauient flow past a circular
cylinder at a subcritical Re = 3900. The turbuliémv in the subcritical Re = 3900
regime is a well-studied validation case (refeKtavchenko and Moin (2000) and
reference therein) and has detailed experimentalatad large eddy simulation (LES)
results. The benchmark data of flow parametersideecdrag coefficient (§), base

pressure coefficient (%), Strouhal number (St), separation anglgy from the cylinder

www.manaraa.com



40

front, length (L) of the mean recirculation regiamd minimum streamwise velocity
(Umin) inside the recirculation region. Those data caolitained from Kravchenko and
Moin (2000), Ong and Wallace (1996), Cardell (19%)n and Hanratty (1969), and
Hansen and Forsythe (2004). The pressure profith@eylinder surface is available for
a slightly higher Re = 4020 originally from Norbesigown in Kravchenko and Moin
(2000). For Re = 3900, Lourenco and Shih (the tian from Kravchenko and Moin
(2000)) provide detailed particle image velocimetrgasurement of mean velocity and
Reynolds stresses in the wake near the cylindeg.add Wallace (1996) show hot wire
measurement of the mean velocity and the Reynaidsses in the far wake away from
the cylinder.

Kravchenko and Moin (2000) compare their own LESuls with the
experimental data and the LES results of Beauddrivimin (1994), and Mittal and Moin
(1997). They identify effects of the vertical gresolution parallel to the cylinder axis on
the numerical results at the subcritical Re= 3900s will be discussed later.

The V6.2.5 results at the subcritical Re are comgbavith the experimental data
and the benchmark LES results in the literaturedditional to the V6.2.5 simulations,
the V6-IBM and V6-OC simulations are also perforna¢the same Re to analyze the
accuracy of V6.2.5. For all the solvers, computslayrids with different vertical
resolutions are generated, and the numerical eeatdtcompared and analyzed with
regard to the effects of the vertical grid resauafiespecially on Karman vortex shedding
in the flow.

Table 3.4 shows the summary of simulation condgifumn Re = 3900. The
domain size for the V6-IBM simulations is -2x/D < 20, -20< y/D < 20, and -X z/D
< 3 in the streamwise, transverse, and verticattomes, respectively. In order to analyze
the effects of the vertical grid resolution, twdfelient grids 288x248x24 and
288x248x48 are used for 3900-IBM-C and 3900-IBMrbgpectively. The V6-OC

simulations are performed using O-grids with thdius 20D in the horizontal plane. The
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domain size in the vertical direction is<&/D < 3. Three different grids consisting of
1.57M, 3.14M and 12.6M points are used for 3900-©G900-OC-M, and 3900-OC-F,
respectively. Note that 3900-OC-C and 3900-OC-Mehgitferent vertical grid
resolutions. The additional simulation 3900-OC-pesformed to analyze effects of the
grid resolution in the horizontal directions on thenerical results.

The Cartesian domain size and grid resolutionghi®i/6.2.5 simulations are the
same as those for the V6-IBM simulations, agaimrarer to investigate the accuracy of
V6.2.5. The boundary layer grid resolutions for ¥&2.5 simulations 3900-CS-C and
3900-CS-M correspond to the near-wall resolutid39@0-OC-C and 3900-OC-M,
respectively.

Fig. 3.9 — 3.14 show predictions of the instantaisdtow at Re =3900. Long
shear layers separating from both sides of thadgl and the Karman vortex shedding
are clearly seen in Fig. 3.9 — 3.11. The Karmarieces are affected largely by the
velocity component in the vertical direction. F&y12 shows the vertical velocity on the
center plane of the wake and indicates three-dimarabty of the flow at Re = 3900. The
unsteady recirculation region in Fig. 3.13 andraliing regions of positive and negative
transverse velocity corresponding to the Karmanices in Fig. 3.14 can be clearly
observed. In addition, 3900-OC-F prediction captum®re small structures in the wake
due to the finer grid resolution far away from tiyéinder.

The instantaneous statistics were accumulatedapgmoximately eight vortex
shedding cycles (T = 40D/). The flow quantities were also averaged ovewtréical
direction.

Table 3.5 compares the experimental data and tisereBults of G, Cyp, St,0sep
and characteristics of the mean recirculation regie., L, and W,. Instantaneous
values of G shown in Fig. 3.15 (a) were accumulated to ohtaénmean value of Cin
Table 3.5. Fast Fourier transform (FFT) was perfaro lift coefficients, and the values

of St in Table 3.5 were determined as the peakgn315 (b). The predictions ofy&nd
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Cop by V6-IBM show improvement by the grid refinemémthe vertical direction. St is
predicted within 4.7% of the experimental data bthti8900-1BM-C and 3900-I1BM-M.
The predictions ofsepindicate that the boundary layer separates edrtiar the cylinder
surface in 3900-IBM-M, and the prediction by 39@M-M is closer to the experimental
data. The V6-IBM results show that L increases keetw3900-I1BM-C and 3900-IBM-M,
indicating that the increase is due to refineménte vertical grid resolution. Compared
to the experimental data, the deviations of L predi by 3900-1BM-C and 3900-I1BM-M
are 18.6% and 10%, respectively. The overprediaidnby the finer vertical grid
resolution is consistent with the LES results imkahenko and Moin (2000)..4
predicted by 3900-IBM-M is closer to the experinsmiata.

Predictions of the flow parameters in 3900-OC-C 3a@d0-OC-M show similar
trends to those observed in 3900-IBM-C and 39004BMCp and Gy, improve
significantly with the vertical grid refinement atite former compares within 6% of the
experimental data in 3900-OC-M. St is predictechimi7% of the experimental data by
both 3900-OC-C and 3900-OC-M. 3900-OC-M predictidAse, compares within 1% of
the experimental data. Compared to the experimeatal 3900-OC-C underpredicts L
by 11.4%, whereas 3900-OC-M overpredicts L by 58%ain, the trend of L with the
vertical grid refinement is consistent with thaseftved by Kravchenko and Moin (2000).
Unin IS predicted well in 3900-OC-C but is overpredichbs 20% in 3900-OC-M. A
similar overprediction was observed in the benchkm&sS simulation (Kravchenko and
Moin, 2000) and was explained as the result ofydeahsition in the separated shear
layers due to external disturbances to the exp@tinas discussed later. The time history
of the drag coefficients in Fig. 3.15 shows higthectuations in 3900-OC-C than in
3900-OC-M. This is because the transition in theasteayers occurs earlier in 3900-OC-
C than in 3900-OC-M, as discussed later. Effecthefvertical grid resolution on the

transition have been found by Kravchenko and Ma00Q) and will be discussed later in
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this study. 3900-OC-F shows similar values of tbe/fparameters to those in 3900-OC-
M, which indicates that grid refinement in horizalndirections does not affect the
computations significantly.

The predictions by 3900-CS-C and 3900-CS-M showlairtrends with the
vertical grid refinement to those observed in ti&IBM results and, as a consequence,
the V6-OC results. The 3900-CS-M predictions aose&t to the experimental data, and
the differences of £ Cyp, St anddsepare within 2.02%, 0.1%, 4.65% and 6.51%,
respectively. Compared to the experimental datmd. Uy, are overpredicted by up to
42% in 3900-CS-M, while the differences are up%oi 3900-CS-C. Again, the
overpredictions of L and k} are consistent with the benchmark LES results in
Kravchenko and Moin (2000). The time history of thiag coefficients shows higher
fluctuations in 3900-CS-C than in 3900-CS-M.

In Fig. 3.16 - 3.20, the mean flow statistics peceelil by V6.2.5, V6-OC, and V6-
IBM are compared with the experimental data (Ordy\Wallace, 1996) and the
benchmark LES results (Beaudan and Moin, 1994 ;aviattd Moin, 1997; Kravchenko
and Moin, 2000). The experimental data of Norbargl Lourenco and Shih were taken
from Kravchenko and Moin (2000). Both V6-IBM pretians of surface pressure in Fig.
3.16 are in good agreement with the experimental d2n the center line of the wake,
the minimum streamwise velocity of 3900-IBM-M ingB8.17 is located in the more
downstream region than 3900-IBM-C. As shown in Bid8, the predictions of the
streamwise velocity profiles improve significantiyth the vertical grid refinement
especially beyond x/D = 1. In Fig. 3.19, the traarse velocity profiles predicted by
3900-IBM-C agree better with the experimental data those by 3900-I1BM-M,
whereas the 3900-IBM-M predictions compare welhwite benchmark LES results by
Kravchenko and Moin (2000). Kravchenko and MoinQ@)attributed the discrepancies
between the experimental data and the LES resu#isternal disturbances to the

experiment measurement. It is expected that sigthrdances may cause transition of
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the separating shear layer to turbulence occudioggr to the cylinder, which results in
shorter shear layers and more prominent V-shapadgs of the streamwise velocity.
3900-IBM-C predicts shorter shear layers than 38M-M in Fig. 3.20, and, as a
consequence, the recirculation region length LSBIBM-C is shorter than that of
3900-IBM-M in Table 3.5. The shorter shear layenply that the transition to turbulence
occurs earlier in 3900-IBM-C than 3900-IBM-M. Ndteat the only difference of the
grids between 3900-IBM-C and 3900-IBM-M is the desion in the vertical direction.
Thus, the predictions of the resolved turbulencthénflow at Re = 3900 are dominated
mainly by the velocity component in the verticaledtion. This is consistent with
observations of Kravchenko and Moin (2000). Furtinane, the Karman vortex is
attached onto the cylinder surface in the 3900-IBesult. This results in the larger
unsteadiness ingCof 3900-IBM-C in Fig. 3.15 (a).

The turbulence statistics are compared in Fig. aritll3.22. The experimental
data in the near (x/D = 1.54) and far wake (6D < 10) are taken from Hansen and
Forsythe (2004), and Ong and Wallace (1996), résde. At x/D = 1.54, the
streamwise Reynolds normal stré&gs = u'u’ has the peak values at two transverse
locations. The Reynolds shear str@gs = u'v' shows an almost linear decrease between
the maximum and minimum values. The transverse 8dgmormal stresR,,,, = vy
shows the peak on the center plane. V6-IBM preaiistiof Ry are significantly
improved by the vertical grid refinement. The potidins of other Reynolds stress
components by 3900-IBM-M are also in better agreegmath the experimental data than
3900-IBM-C. In the far wake at x/D = 6, 7 and 1008-IBM-M predictions agree better
with the experimental data for bothRand R,.

The trends in the numerical results of 3900-OC-@€ 3®00-OC-M are similar to
those observed in the results of V6-IBM simulatidnsFig. 3.16, the V6-OC predictions
of the surface pressure, especially in the seghfbte region, are improved by the

vertical grid refinement, and both 3900-OC-M an@@B®C-F agree very well with the
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experimental data. The streamwise velocity profk3900-OC-M and 3900-OC-F in
Fig. 3.17 and 3.18 show the minimum values in tleentdlownstream locations of the
wake center line and more prominent U-shaped texssvrofiles until x/D = 1.06 than
those of the experimental data. No significantedé#hces can be observed in the results
of the streamwise velocity between 3900-OC-M an@i039C-F except the lower
minimum value of 3900-OC-F. The transverse velogityfile of 3900-OC-C compares
better with the experimental data especially atx/D06 than those of 3900-OC-M and
3900-0OC-F, while the 3900-OC-M and 3900-OC-F resatt in very good agreement
with the LES results of Kravchenko and Moin (2008)Fig. 3.20, 3900-OC-C shows the
shorter shear layers than 3900-OC-M, and it isnitely caused by the vertical grid
refinement.

Both 3900-CS-C and 3900-CS-M in Fig. 3.16 are iacgagreement with the
experimental data. The mean streamwise velocithercenter line of the wake in Fig.
3.17 shows that 3900-CS-C is closer to the expetiahelata than both 3900-IBM-C and
3900-OC-C and 3900-CS-M is closer to the LES regtkin both 3900-IBM-M and
3900-OC-M. This is also true for the transversdila® of the streamwise and transverse
velocities in Fig. 3.18 and 3.19. Note that, fottbof the velocity components, 3900-CS-
C shows the most similar profiles to those of theegimental data in the near wake
region (x/D< 2.02). 3900-CS-C predicts the shorter shear layars 3900-CS-M in Fig.
3.20. Again, this is caused by earlier transitoturbulence in the shear layers owing to
the coarser vertical grid resolution. The earliansition also results in the V-shaped
profiles of the streamwise velocity near the cyindAs shown in Fig. 3.21, the profiles
of Reynolds stresses at x/D = 1.54 show that 398@M3s closer to the experimental
data than 3900-CS-C. Both 3900-CS-C and 3900-C3ddigt R« in good agreement
with the experimental data at x/D = 6 and 7, betghedictions are lower at x/D = 10 due
to the relatively coarse grid resolution in thevieake region. Both of the predictions of

R.y agree well with the experimental data.
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3.4 Large Eddy Simulations of Turbulent Flows at

Supercritical Reynolds Numbers

In order to demonstrate the performance of V6.2 ¥%ery high Re complex
turbulent flows, numerical simulations are perfodigy V6.2.5 for the turbulent flows
past a circular cylinder at the supercritical Rex4® and 1x16, i.e., 5E5-CS and 1E6-
CS shown in Table 3.6. The numerical results of-8BEband 1E6-CS are compared with
the experimental data of the surface pressure irstttauer and Leene (1971) and
Zdravkovich (1997). The V6.2.5 results are also parad with the LES results of
Catalano et al. (2003). Effects of Re on the twhuflows past a circular cylinder are
analyzed by comparing the V6.2.5 results of théa&igupercritical Re flows with those
of the lower subcritical Re flow, i.e., 3900-CS-M.

Table 3.6 shows the simulation conditions for tlogv§ at the supercritical Re.
For both 5E5-CS and 1E6-CS, the Cartesian domainisi-5< x/D < 15, -10< y/D <
10, and -X z/D < 1. Catalano et al. (2003) show the delayed saparand the resulting
narrower wake at the supercritical Re than lowerdReh as subcritical Re = 3900 and
1.4 x1G (Kravchenko and Moin, 2000; Breuer, 2000). Becafghis, the domain size
of V6.2.5 in the transverse direction is smallerthhat used for the lower Re = 3900.
The vertical domain length is also shorter than thiathe Re = 3900 case because of the
reduced vertical correlation lengths in the higRerflows. The same vertical domain
length was used by Catalano et al. (2003). Theapissists of 10.2M points.

Fig. 3.23 compares profiles of the mean pressutb®gylinder surface at the
supercritical Re. The experimental data of Flachskas obtained from Zdravkovich
(1997). The predictions of 5E5-CS and 1E6-CS agowd agreement with the
experimental data at similar Re, respectively. TE6-CS result also agrees well with the
LES result of Catalano et al. (2003) at the samelRe experimental data of Flachsbart

at Re = 6.7x10contains a kink near 105°. This indicates thegmes of a separation
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bubble. It is difficult for both experiments andmerical simulations to reproduce the
separation bubble due to sensitivity to disturbar{@atalano et al., 2003).

The surface pressures are compared between thes\pBetlictions and the
experimental data at similar Re in Fig. 3.24. Thespure gradients in the front part are
larger at the supercritical Re = 5%%hd 1x18 than that at the subcritical Re = 3900.
Near the cylinder trailing edge, the pressurebastipercritical Re are higher than that at
the subcritical Re. The adverse pressure gradagrte supercritical Re exist between
90° and 125°, whereas it is located between 75°180d at the subcritical Re. This leads
to the later separations of the boundary layetseasupercritical Re, as shown later.

Fig. 3.25 compares the instantaneous verticalaitytand the mean streamwise
velocity between Re = 3900, 5¥1@nd 1x18. Compared with the subcritical Re = 3900,
the flows at the supercritical Re = 5%Hhd 1x18 exhibits the delayed separations of
the boundary layers. The postponed separationt nesbe narrower wakes and the
shorter recirculation regions at both of the suptical Re than those at the subcritical
Re. At the supercritical Re, the shear layers aaiewith each other near the outer edge of
the recirculation regions. The interactions ofshear layers result in vortices shed into
the wake.

Fig. 3.26 and 3.27 show the iso-surfaces of thiamtaneous vorticity magnitude
(o = 2.5) and the second invariant of the velocigdignt tensor (Q = 1), respectively.
Note that the cylinder lengths are 6D and 2D asstiitgcritical and supercritical Re,
respectively. The vortical structures at the suloaii Re show Karman vortex streets
clearly, whereas the structures at the superdrideaare not similar to the Karman type
of the vortex shedding. Shear layers separating fsoth sides of the cylinder develop in
the streamwise direction at both of the superaiitiRe. Many small-scale vortices exist
inside the recirculation regions between the skaars. The iso-surfaces of the second
invariant of the velocity gradient tensor show tjuasi-vertical vortical structures, which

indicate the vortices in the shear layers.

www.manaraa.com



48

Three instantaneous velocity components on theeceldane of the wake are
compared between the subcritical Re = 3900 anduhercritical Re = 5xftand 1x16
in Fig. 3.28 — 3.30. Negative streamwise velocéy be observed behind the cylinder at
both supercritical and subcritical Re, which indésathe recirculation region. The
minimum streamwise velocities inside the recirgolaregions are larger at the
supercritical Re (Win = -0.4) than that (L, < -0.8) at the subcritical Re. Alternating
regions of positive and negative transverse velaah be observed clearly in the wake
at the subcritical Re, whereas they are not cledrbwn at both supercritical Re. The
magnitudes of the maximum and minimum transversecitees are higher at the
subcritical Re. The vertical velocity component tooms at the supercritical Re show the
remarkable three-dimensionality of the turbuleaw#$ and the smaller flow structures
which correspond to the small-scale vortices inviage at the high Re.

Fig. 3.31 — 3.33 show two Reynolds normal streasesthe Reynolds shear stress
in the wake at Re = 3900, 5x18nd 1x18. All of the Reynolds stresses are symmetric
about the center axis of the wakes. The peak valg® Reynolds stresses are smaller
at the supercritical Re = 5x18nd 1x18than those at the subcritical Re = 3900. At all
the Re, the transverse Reynolds normal stress\ashibe peak value along the center
line of the wake, and the peaks of the streamwesgBlds normal stress and the
Reynolds shear stress exist off the wake center axi

Mean flow fields and Reynolds stresses at the stifieal Re = 5x18and 1x18
are presented in Fig. 3.34 and 3.35, respectiVé¢ig.flows at both Re show similar
characteristics. The streamwise velocity is negabehind the cylinder, which indicates
the existence of the recirculation regions. Inré@rculation regions, the transverse
velocity magnitude is very low and large amountthefsmall-scale vortices are
generated. The Reynolds stresses show the peatsvadar the edges of the recirculation
regions where the velocity gradients are high, thedhormal components are larger than

the shear component.
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The vorticity transport equation can be deriveddiyng the curl of the time-
averaged Navier-Stokes equation. For a steadydlovonstant density, the transport

equation of the vertical vorticity can be writtes1 a

(U 2Q, 4 VHQZ W 6QZ>
d0x dy dz
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whereQ,, Q,, andQ, are the streamwise, transverse, and vertical casmie of the mean
vorticity, respectively. Term (A) in Eq. (3.1) regsents the material derivative of the
mean vertical vorticity. The third term of term (B)the vorticity amplification by the
vertical stretching, while the other terms prowaetex-line bending effects. Term (C)
suggests the vorticity damping by the viscous difin. Terms (D), (E), and (F) are the
vorticity production by inhomogeneities in the Relds stress field (Launder and Rodi,
1983). Longo et al. (1998) analyzed the physicathmmaism of the mean streamwise
vortices in a solid/free-surface juncture flow ygsthe vorticity transport equation. Suh et
al. (2011) and Koo (2011) used the transport eqaatof all vorticity components to
explain the mechanism to generate the vorticelsarflows past an interface piercing
circular cylinder. In this study, the transport atjon of the mean vertical vorticity is
used to analyze the mechanism to generate theesit the single-phase flows at the
very high supercritical Re = 5x3@nd 1x16,

Fig. 3.36 and 3.37 show the source terms for th@wertical vorticity at Re =

5x10 and 1x16, respectively. Both of the supercritical Re respltesent the similar
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features. The x and y components of term (B) bythveex bending are negligibly small,
while the z component of term (B) by the vortexesthing is relatively larger than the
other components due to the strong vertical vastinghe shear layers, as shown in Fig.
3.34 and 3.35. The source terms produced by thadidy stresses are also large in the
wake region. Note that the small-scale vorticetherecirculation region between the
shear layers are dominantly generated by the Rdgratiesses. The mean vertical
vortices in the shear layers are produced domipdnytthe term (Ep%oxoy(u'u’ — v'v')
and the term (F)af/oy>-6%ox*)u'v' due to the high gradients of the streamwise Relgol
normal stressu(u’) and the Reynolds shear stres/() in the part of the flows.

3.5 Summary

Validations of V6.2.5 have been performed for timgle-phase flows past a
circular cylinder. The validations cover the twandinsional steady (Re = 40) and
unsteady (Re = 200) laminar flows and the turbullents at the subcritical Re = 3900
and the supercritical Re = 5¥18nd 1x16. This study has also analyzed the effects of
the domain size and the grid resolution of the lolauy layer grid on the numerical
results at Re = 40 and the effects of the vergdal resolution on the numerical results at
Re = 3900. The numerical results obtained by V&2 been compared with those by
V6-IBM, a Cartesian grid solver, and V6-OC, an ogbnal curvilinear grid solver. The
results have also been compared with the numegsalts and the experimental data in
the literature.

At Re = 40, the numerical results obtained by \\show no significant
dependence on the resolution and the size of thedawy layer grid. V6.2.5 predicts a
pair of the symmetric counter-rotating vortices inelthe cylinder, and the
characteristics of the recirculation region aredpred within 6.6% of the experimental
data. The predictions of the drag coefficient aB%®higher than the experimental data,
but they agree very well with the numerical resaftthe past studies. Compared to the

numerical results in the literature, V6.2.5 presligp to 10% better vorticity magnitude
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and pressure distributions on the cylinder surfhea V6-IBM with the same Cartesian
grid. This indicates that the near-wall regionasalved properly by the boundary layer
grids for V6.2.5.

Periodic Karman vortex shedding was reproduced ®2¥% at Re = 200. V6.2.5
predicts the drag coefficient, the lift coefficieahd Strouhal number in good agreement
with the numerical results of several past studies.

At Re = 3900, V6.2.5 reproduces the long shearsageparating from both sides
of the circular cylinder and the Karman vorticeteracting with the vertical velocity
component. V6.2.5 has predicted the mean flow parars including the drag
coefficient, the base pressure coefficient, theBtal number, the separation angle from
the cylinder leading edge, the length of the meairculation region, and the minimum
streamwise velocity inside the recirculation regidhe predictions of the mean flow
parameters compare within 6.5% of the experimatdtd. The numerical results by
V6.2.5 have also been compared with the experirhdata and the results by V6-IBM,
V6-OC, and the numerical study of Kravchenko andriM@000) in terms of the profiles
of the velocity components and the Reynolds steessthe wake region. The study of
the effects of the vertical grid resolution haswhdbetter agreement of the coarser grid
results with the experimental data. On the othadhthe results given by the finer grids
agree better with the LES results by KravchenkoMnoah (2000). These trends with the
vertical grid resolution are consistent with thas&ravchenko and Moin (2000), and it
has been explained that both the coarser grid gireds and the experimental data
exhibit earlier transitions of the shear layeruddtilence than the finer grid predictions,
which result in significantly smaller recirculatioegions.

In order to demonstrate the performance of V6.2 the turbulent flows at very
high Re, the numerical simulations have been pexdrfor the flows at the supercritical
Re = 5x18 and 1x16. Compared to the flow at the subcritical Re = 3380ch delayed

separations of the boundary layers have been peeldid the supercritical Re = 5x10
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and 1x16. The delayed separations lead to the narrower svaké the shorter
recirculation regions at the very high Re. The mtahs of V6.2.5 have been compared
with the experimental and numerical results in ®eohthe pressure profiles on the
cylinder surface. V6.2.5 has shown the good agreemig¢h the experimental data and
the LES results by Catalano et al. (2003). In shisly, the effects of Re on the turbulent
flows have also been analyzed by comparing the . é@merical results at the
subcritical Re (=3900) and the supercritical R&%20 and 1x16). The surface pressure
shows the features corresponding to the separatieach Re. Many small-scale vortices
are generated between the shear layers right bétenclylinder at the supercritical Re,
while they are not generated at the subcriticalTRe. Reynolds stress contours show the
similar distributions, but the magnitudes are sarak the supercritical Re. The
mechanism to generate the vertical vortices astipercritical Re has been analyzed
using the vorticity transport equation. The anaymas revealed that the vertical vortices
in the wake are generated mainly by the gradieintseoReynolds stresses and the

vertical stretching effect.
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Table 3.1 Simulation conditions for the laminamfloat Re = 40 and 200

~ | Boundary Grid resolution
Case Re| Solver Domain size layer
domain | NyxNyxN, | NxNgxN,
-20<x/D <20
40-1BM V6-1BM == i i
11<yD<11 204x260x3
40-0C-C - 128x128x%3
O-type grid
40-0C-M ve-oc | — IPC S ] ] 256x128x3
40-OC-F - 512x128x3
40
40-CS-C 204x260%x3 13x128%3
40-CS-M 0.20D | 204x260x3 22x128x3
-20<x/D<20
40-CS-F1 V6.25 | 77 yD=<11 204x260x3 32x128x3
40-CS-F2 0.15D | 204x260x3 24x128x3
40-CS-F3 0.10D | 204x260x3 17x128x3
-20<x/D <20
200-1BM V6-1BM == i i
11<yD<11 204x260x3
O-type grid
200-OC | 200| V6-OC - - 256x128x3
r/D = 20
-20<x/D <20
200-CS V6.2.5 == ]
11<yD<11 0.20D | 204x260x3 22x128x3
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Table 3.2 Characteristics of the recirculation eegiseparation angles, drag
coefficients, and pressure and friction componahe = 40

L a b ®° Co CD,p CD,f
Experiment, 2.13 0.76 0.59 53.8 1.48 - -
Numerical 2.28 0.72 0.58 54.3 1.60
results +0.07 +0.01 +0.02 +1.3 +0.10 - -
(E) (7.04%) | (-5.26%) | (-1.69%) | (0.93%) | (8.11%)
40-1BM 2.11 0.70 0.58 50.9 151
0.97| 0.54
(E) (-0.94%) | (-7.89%) | (-1.69%) | (-5.39%) | (2.03%)
40-0OC-C 1.86 0.61 0.55 51.7 1.55 101l 054
(E) (-12.7%) | (-19.7%) | (-6.78%) | (-3.90%) | (4.73%)| '
40-OC-M 2.05 0.66 0.58 52.4 1.56 102! 054
(E) (-3.76%) | (-13.2%) | (-1.69%) | (-2.60%) | (5.41%)| '
40-OC-F 2.01 0.73 0.57 54.0 1.56 102! 054
(E) (-5.63%) | (-3.95%) | (-3.39%) | (0.37%) | (5.41%)| '
40-CS-C 2.24 0.72 0.59 53.7 1.58
1.04| 0.54
(E) (5.16%) | (-5.26%)| (0%) | (-0.19%)| (6.76%)
40-CS-M 2.24 0.72 0.59 53.7 1.58
1.04| 0.54
(E) (5.16%) | (-5.26%)| (0%) | (-0.19%) | (6.76%)
40-CS-F1 2.24 0.72 0.59 54.0 1.58
1.04| 0.54
(E) (5.16%) | (-5.26%)| (0%) (0.37%) | (6.76%)
40-CS-F2 2.24 0.71 0.59 54.2 1.58
1.04| 0.54
(E) (5.16%) | (-6.58%)| (0%) (0.74%) | (6.76%)
40-CS-F3 2.23 0.72 0.59 54.0 1.58
1.04| 0.54
(E) (4.69%) | (-5.26%)| (0%) (0.37%) | (6.76%)
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Table 3.3 Drag and lift coefficients and Strouhaiers at Re = 200

Co C
St
Mean | Amplitude Mean | Amplitude
1.455 0.042 0.59 0.200
Numerical results 0
+0.115| +0.012 +0.16 +0.002

200-1BM 1.41 0.040 0 0.64 0.20(0
200-0OC 1.32 0.041 0 0.66 0.19]
200-CS 1.34 0.043 0 0.67 0.19
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Table 3.4 Simulation conditions for turbulent floatsRe = 3900

Boundary Grid resolution
Case Solver| Domain size layer
domain | NNy*N: NrxNoxN,
3900-IBM-C -20=x/D=20 288x248x24 i
V6-IBM | -20<y/D < 20 -
3900-1BM-M -3<z/D<3 288x248x48 -
3900-0OC-C O-type grid - 256x256x24
3900-0OC-M| V6-0OC r/D = 20 - - 256%x256x48
-3<z/D<3
3900-0OC-F - 512x512x48
3900-CS-C -20=x/D=20 288x248x24|  20x256x24
V6.2.5 [-20<y/D<20| 0.2D
3900-CS-M -3<z/D<3 288x248x48| 20x256x48
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Table 3.5 Drag coefficients, Strouhal numbers, sdwa angle from the
cylinder front and characteristics of the meanrcedation region at Re =

3900
Co -Cob St Osep L/D -Unnin
_ 0.99 0.88 0.215 | 86.0° 1.4 0.24
Experiment
+0.05| £0.05 | £0.005| *2° +0.1 +0.1
1.00 0.93 0.203 | 85.8° 1.35 0.32
LES
~104 | ~095| ~0.210|~88.0°| ~1.40 | ~0.37
® (3.03%) | (6.82%)| (-3.95%) | (1.05%) (-1.79%)| (43.8%)
3900-IBM-C| 1.20 1.00 0.225 115° 1.14 0.46
(E) (21.2%)| (13.6%)| (4.65%) | (33.7%) (-18.6%)| (91.7%)
3900-IBM-M| 1.02 0.87 0.225 110° 1.54 0.28
(E) (3.03%) | (-1.14%)| (4.65%) |(27.9%) (10.0%) | (16.7%)
3900-0C-C| 1.20 1.03 0.200 | 90.0° 1.24 0.24
(E) (21.2%)| (17.0%)| (6.98%) | (4.65%) (-11.4%)| (0%)
3900-OC-M| 0.93 0.88 0.200 | 86.7° 2.10 0.29
(E) (-6.06%)| (0%) | (6.98%) |(0.81%) (50.0%) | (20%)
3900-OC-F| 0.94 0.85 0.198 | 86.5° 2.14 0.36
(E) (-5.05%)| (3.41%)| (-7.91%)|(0.58%) (52.9%) | (50%)
3900-Cs-C| 1.18 0.92 0.208 | 97.0° 1.51 0.25
(E) (19.2%)| (4.55%)| (-3.26%)|(12.8%)| (7.86%) | (4.17%)
3900-CS-M| 0.97 0.88 0.225 | 91.6° 1.89 0.34
(E) (-2.02%)| (0%) | (4.65%) |(6.51%) (35.0%) | (41.7%)
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Table 3.6 Simulation conditions for turbulent floatsRe = 5.0x10and 1.0x16

Boundary Grid resolution
Case Re | SolverDomain size| layer
. NxxNnyz erNexNZ
domain
5E5-CS | 5.0x10 -5<x/D<15
V6.2.510<y/D<1Q 0.2D 220x200x20028x256%200
1E6-CS | 1.0x19

-1<z/D<1
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Figure 3.1 Computational grids and boundary coadgifor (a) V6-1BM, (b) V6-OC, and
(c) V6.2.5. The inset shows the boundary layer dorsize of 0.2D.
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Figure 3.2 Streamlines and pressure contours arthendircular cylinder at Re = 40. The
range of the pressure contours is from -0.45 t6 Qiéh the interval 0.05.
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Figure 3.3 Characteristics of the recirculationoagt Re = 40
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Figure 3.4 Distribution of pressure (left colummgdavorticity magnitude (right column)
on the circular cylinder surface at Re = 40
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Figure 3.4 Continued
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40-CS-M

Figure 3.5 Streamwise (left column) and transvéiigat column) components of
velocity around the circular cylinder at Re = 4@eTcontour range is -0.1 - 1.2 with the
interval 0.1 and -0.55 - 0.55 with the interval Df0r the streamwise and transverse

components, respectively.
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Figure 3.6 Comparison of pressure (left column) amrdicity magnitude (right column)
on the circular cylinder surface at Re = 40 amdregdurrent solvers
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Figure 3.7 Vortex shedding obtained by 200-CS. ddrgours show pressure distribution
with the range -0.65~0.65 and interval 0.05.
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Figure 3.8 Time histories of drag and lift coeficts compared with those obtained by
Xu (2008)
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Figure 3.9 Iso-surfaces of instantaneous vortitiggnitude ¢D/U = 2.5) around the
cylinder
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3900-OC-M

Figure 3.10 Comparison of iso-surfaces of instagdas vorticity magnitudesD/U =
2.5) around the cylinder between 3900-OC-M and 3OQ0F
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Figure 3.11 Instantaneous vorticity magnitude enwake. The contour range is 0.5 — 10
with interval 0.5.
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Figure 3.14 Instantaneous transverse velocity ercémter plane of the wake
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Figure 3.15 Force coefficients: (a) Time historydadg coefficients; (b) FFT of lift
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Figure 3.16 Pressure distribution on the cylindefase
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Figure 3.17 Mean streamwise velocity on the wakeerdine
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Figure 3.18 Mean streamwise velocity at transveestions in the wake. Refer to the
caption in Figure 3.17 for details.
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v/U

Figure 3.19 Mean transverse velocity at transveestions in the wake. Refer to the
caption in Figure 3.17 for details.

www.manharaa.com




79

3900-1BM-C

¥ 3900-IBM-M

QOO'CS'M

Figure 3.20 Instantaneous (left column) and meight(column) vorticity magnitude
contours
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Figure 3.21 Reynolds stresses at x/D = 1.54: (@pstwise normal stress component; (b)
shear stress component; (c) transverse normasstoesponent. The square symbols
show experimental data taken from Hansen and Ferg004). Refer to the caption in
Figure 3.17 for details.
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Figure 3.22 Reynolds stresses at three locatiotieeifar wake: (a) streamwise normal
stress component; (b) shear stress component. ®Refez caption in Figure 3.17 for
details.
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Figure 3.23 Pressure distributions on the cylirslgface at supercritical Re
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Figure 3.24 Comparison of the mean pressure digioibs on the cylinder surface
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Figure 3.25 Comparison of flows: (top) 3900-CS-mijddle) 5E5-CS; (bottom) 1E6-CS
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Figure 3.26 Iso-surfaces of the instantaneousaityrtmagnitude ¢ = 2.5): (a) 3900-CS-
M (b) 5E5-CS; (c) 1E6-CS
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Figure 3.27 Iso-surfaces of the second invariathefvelocity gradient tensor (Q = 1):
(a) 3900-CS-M (b) 5E5-CS; (c) 1E6-CS
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Figure 3.28 Instantaneous streamwise velocity ercémter plane of the wake: (a) 3900-
CS-M; (b) 5E5-CS; (c) 1E6-CS. The contour rang®i8 — 1 with interval 0.1.
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Figure 3.29 Instantaneous transverse velocity ercémter plane of the wake: (a) 3900-
CS-M; (b) 5E5-CS; (c) 1E6-CS. The contour rangd is 1 with interval 0.1.
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Figure 3.30 Instantaneous vertical velocity ondeeter plane of the wake: (a) 3900-CS-
M; (b) 5E5-CS; (c) 1E6-CS. The contour range i450- 0.45 with interval 0.05.
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Figure 3.31 Streamwise Reynolds normal stregs$R'v’) in the wake: (a) 3900-CS-M:;
(b) 5E5-CS; (c) 1E6-CS. The contour range is (2-with interval 0.02.
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Figure 3.32 Transverse Reynolds normal stregs<R'v’) in the wake: (a) 3900-CS-M;
(b) 5E5-CS; (c) 1E6-CS. The contour range is 036 @ith interval 0.02.
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Figure 3.33 Reynolds shear stresg Ru'v') in the wake: (a) 3900-CS-M; (b) 5E5-CS;
(c) 1E6-CS. The contour range is -0.11 — 0.11 wmtérval 0.01.
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Figure 3.34 Mean flow fields and Reynolds stresgd®e = 5x18 (a) streamwise
velocity; (b) transverse velocity; (c) vertical toity (d) Re; (€) Ry; (f) Ry
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Figure 3.35 Mean flow fields and Reynolds stresgd®e = 1x18 (a) streamwise
velocity; (b) transverse velocity; (c) vertical toity (d) Re; (€) Ry; (f) Ry
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Figure 3.36 Source terms for the mean verticalisitytat Re = 5x18 (a) x component
of term (B); (b) y component of term (B); (c) z cpoment of term (B); (d) term (D); (e)
term (E); (f) term (F). The contour range is -220-with interval 1.
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Figure 3.37 Source terms for the mean verticalisitytat Re = 1x18 (a) x component
of term (B); (b) y component of term (B); (c) z cpoment of term (B); (d) term (D); (e)
term (E); (f) term (F). The contour range is -220-with interval 1.
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CHAPTER 4
NUMERICAL SIMULATIONS OF FLOWS PAST FREE SURFACEPBPRCING
CIRCULAR CYLINDERS

4.1 Introduction

Since flows past free surface piercing circulamdérs have received much less
attention than the single-phase flows, only a fepeeimental and numerical studies on
the two-phase flows around the circular cylindeesavailable in the literature. In spite
of this, the two-phase flows past the circularmgérs still play important roles in various
engineering applications including offshore stroesuand surface vessels. Moreover, the
flows past the free surface piercing circular ayérs include complicated phenomena
due to the generation of waves in various forms inkeractions of the waves with the
body and vortices, the interfacial effects like bigbentrainment and surface tension, and
three-dimensional flow separation, which are ofgrsterest in fluid mechanics. In this
study, CFDShip-lowa version 6.2.5 is applied toftbess past a circular cylinder
piercing the free surfaces vertically. It aimsratastigating accuracy of the coupled
orthogonal curvilinear/Cartesian grid solver in gw@ulation of the flows with free
surfaces.

There are several experimental studies on the flzags the vertical circular
cylinders piercing the free surfaces. In the stofday (1947), Froude numbers (Fr) and
Reynolds numbers (Re) were determined by sevedratraf those non-dimensional
variables. For each ratio with different Fr, thegasured the maximum heights of the
bow waves in front of the circular cylinder and thepths of the depression on the center
line behind the cylinder, and those data were @tb#ts a function of Fr. Chaplin and
Teigen (2003) review the experimental study of KEBA7). Inoue et al. (1993)
conducted an experiment of the free surface flost paircular cylinder at Re = 2.7¥10

and Fr = 0.8. They measured the mean free surfagat®mns and the root mean square
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(RMS) of the elevation fluctuations around the wlac cylinder. Profiles of the
streamwise velocity and the free surface elevatiere also available in the literature.

Some numerical studies obtained the large eddylation (LES) results of the
flows past vertical surface piercing circular cd@ns. Kawamura et al. (2002)
investigated interactions between surface wavesiaddrlying viscous wakes around a
free surface piercing circular cylinder at Re =A@ with three different Froude
numbers Fr = 0.2, 0.5, and 0.8. The computationdlig fitted to the air-water interface
and updated every time step by moving the gridtgsamthe vertical direction. Yu et al.
(2008) studied free surface flows past a circuéinder at Fr up to 3.0 and Re up to
1.0x1G. A volume-of-fluid method was employed to simultte air-water interfaces.
Suh et al. (2011) performed LES of the flows pafsea surface piercing circular cylinder
at Fr = 0.2 and 0.8 with the same Reynolds numieer R.7x10 using CFDShip-lowa
version 6.2 with a level set based sharp interfaethod. Koo (2011) extended the study
of Suh et al. (2011) and used CFDShip-lowa veréi@with a coupled level set and
volume-of-fluid method to perform numerical simudais with conditions mainly based
on the experiments of Chaplin and Teigen (2003ps€mumerical studies show the
detailed results of the free surfaces, the meamn dlod turbulence statistics, the vortical
structures, and the hydrodynamic forces at seWegholds numbers up to Re =
4.58x10 and Froude numbers up to Fr = 1.64.

4.2 Large Eddy Simulations of Two-Phase Turbulent

Flows
In order to assess the accuracy of CFDShip-lowsioe6.2.5 in the flows with
the free surfaces, numerical simulations using BESperformed for the two-phase
turbulent flows past a circular cylinder piercimgtfree surfaces vertically at (Re, Fr) =
(2.7x1d, 0.20), (2.7x18 0.80), and (4.58x£01.64), i.e., 2.7E4-0.20, 2.7E4-0.80, and
4.58E5-1.64 in Table 4.1. Those Re and Fr have tad@m into account because several

detailed results of those two-phase flows are alslglfrom the numerical and
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experimental studies in the literature. Note thatReynolds number is subcritical at the
low (= 0.20) and medium (= 0.80) Fr while it is sugritical at the high Fr = 1.64. In this
study, effects of the free surfaces on the vorstaictures and the separated regions are
also analyzed especially for 4.58E5-1.64 by conmggite results with those of the
single-phase flow at the similar Re = 5%1iCe., 5E5-CS.

Table 4.1 shows the simulation conditions at eaclirér 2.7E4-0.20 and 2.7E4-
0.80, the Cartesian domain size is <IX¥D < 15, -10<y/D < 10 and -& z/D< 2, and
the grid consists of 9.4M points. For 4.58E4-1164, domain size is -15x/D <42, -20
<y/D <20 and -& z/D< 2, and the grid consists of 14.6M points.

The drag and lift coefficients are defined as

o - Drag _ Lift
L L
7P.UsDH 7PLUsDH

(4.1)
whereH is the still water depth angj is the water density. The flows were regarded as
statistically stationary when the fluctuationstod running mean are less than 1% of the
mean G. After the flow was converged, flow field data eomg up to T = 80D/U were
collected to obtain the time-averaged results. phagedure follows discussion in Suh et
al. (2011) and Koo (2011). Fig. 4.1 shows the tmstories of the drag and lift
coefficients from which the instantaneous statstiere accumulated. The result of
4.58E5-1.64 is not shown since the vertical grgbhation is not fine enough to compute
the forces accurately. Fast Fourier transform (F&71J. is shown in Fig. 4.2. The peak
values are at St = 0.2 for both 2.7E4-0.20 and£2GBO0. The Strouhal numbers
correspond to the periods of vortex shedding astheritical Re = 2.7x10

Table 4.2 compares the meag &hd the root mean squares (RMS) of(C_.*M9).
Unfortunately, no experimental data are availableua the hydrodynamic forces of the
circular cylinder in the two-phase flows at Fr 2 @nd 0.8 with Re = 2.7x{0However,

the experimental measurement of the single-phagedt the same Re can be obtained

from Szepessy and Bearman (1992). The predictibBs/&4-0.20 and 2.7E4-0.80 show
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up to 18% lower § and up to 51% lower,G"* than the experimental data of the single-
phase flow at the same Re (Szepessy and Bearn@d),. The effects of the deformation

of the free surface probably result in the lowduea of G and G™M®

(Kawamura et al.,
2002; Yu et al., 2008). It is noted that the CFSlowa version 6.2.5 predictions
approach the experimental data as Fr decreasestréhd is consistent with that
observed in Kawamura et al. (2002). The predictmfrisoth 2.7E4-0.20 and 2.7E4-0.80
compare within 4% of the LES results of Kawamuralef2002) and Suh et al. (2011).

Fig. 4.3 and 4.4 show instantaneous free surfam@pated by 2.7E4-0.20 and
2.7E4-0.80, and 4.58E5-1.64. In Fig. 4.3, the nurakresults of CFDShip-lowa version
6.2.5 show the similar characteristics to thoselipted by CFDShip-lowa version 6.2
(Koo, 2011). At Fr = 0.20, the deformation of theef surface is negligibly small and no
waves are generated in the wake behind the cyli@iethe other hand, the free surfaces
are deformed largely at higher Fr = 0.80 and 1B#v waves are generated in front of
the cylinder. The depressions exist on the dowastrside of the cylinder. The free
surfaces are very rough around the cylinder, aisdrnlicates the existence of vortical
structures below the free surface (Sarpkaya, 1908;et al., 2011). Fig. 4.4 clearly
shows Kelvin waves generated in the wake at F86 nd 1.64. The wave lengths
predicted by 2.7E4-0.80 and 4.58E5-1.64 are closkd theoretical values, i.exR>.

Some features of the mean free surfaces are cothpasaditatively and
guantitatively. Fig. 4.5 compares the maximum hisigth the bow waves and the depths
of the depressions on the center plane of the wiake experimental data was obtained
from Hay (1947) reviewed in Chaplin and Teigen @00 he solid line shows Bernoulli
equation result and indicates possible maximum Wwewe heights (=Ff2). The bow
wave heights and depression depths predicted bySGFbDlowa version 6.2.5 are in
fairly good agreement with the experimental daia dwe Bernoulli equation result.

Fig. 4.6 — 4.8 compare the near wake profiles efrtiean free surface elevations

(hmean and the RMS of the free surface fluctuationsdibetween the experimental data

www.manaraa.com



101

(Inoue et al, 1993), the LES results in the literat{Kawamura et al., 2002; Suh et al.,
2011; Koo, 2011), and the prediction of 2.7E4-02@E4-0.80, and 4.58E5-1.64.
CFDShip-lowa version 6.2.5 predicts bothfpand hysat Fr = 0.20 in good agreement
with the CFD results of Kawamura et al. (2002). dibiat the differences between the
numerical results are smaller than those observiyler Fr. Although the numerical
results of 2.7E4-0.80 agree well with the experitakdata of Inoue et al. (1993), it
under-predicts the depression on the profile abx3=ear the center plane of the wake.
The prediction is more similar to the CFDShip-loveaision 6.2 result by Suh et al.
(2011). The predictions of 4.58E5-1.64 are in gagceement with those of the
CFDShip-lowa version 6.2 by Koo (2011).

Inoue et al. (1993) shows the detailed measureofehe free surface elevations
and the RMS of the free surface fluctuations arahectcircular cylinder at Re = 2.7¥10
and Fr = 0.80. The experimental data are comparttine numerical results of 2.7E4-
0.80 in Fig. 4.9. CFDShip-lowa version 6.2.5 capsuall the features of the mean free
surface elevations in the experimental data well, the bow wave on the upstream side
of the cylinder, an almost constant slope leadinthé large depression on the
downstream side, and the Kelvin waves diverging the wake. The 2.7E4-0.80 result of
the free surface fluctuations shows good agreemghtthe experimental data in terms
of the overall distribution and the location of {peak value. The peak value is slightly
under-predicted than the experimental data. CFD&wa version 6.2.5 predicts
fluctuations on the front side of the cylinder. 3kiend is similar to the CFDShip-lowa
version 6.2 result in Suh et al. (2011), and éxplained that the front fluctuations are
due to the presence of the necklace vortices.

Inoue et al. (1993) also measured the verticalilpsobf the mean streamwise
velocity in the wake at Re = 2.70<1énd Fr = 0.80. The profiles are compared in Fig.
4.10. The experimental data of Inoue et al. (139®)ws that the streamwise velocity is

almost constant in the deep flow and decreasdsedsde surface is approached. This
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trend corresponds to the recirculation region @nftbe surface, which is longer in the
streamwise direction and wider in the transversectibn than that in the deep flow (Suh
et al., 2011). The results of 2.7E4-0.80 captueeathove features of the streamwise
velocity and show fair agreement with the experitakedata and the LES results of
Kawamura et al. (2002), Yu et al. (2008), and Sudl €011).

Fig. 4.11 compares pressure distributions on thadsr surface in the deep flow
between the experimental data of the single-pHasss fat similar Re = 2xfqNorberg,
1992) and the numerical results by 2.7E4-0.20, 2-B0, and Suh et al. (2011) using
CFDShip-lowa version 6.2. The experimental dathatsubcritical Re shows decreasing
pressure in the separated region after the sepanagint. All of the CFDShip-lowa
version 6.2.5 predictions in the deep flows argand agreement with the experimental
data at similar Re and the numerical result of &udd. (2011).

For all Fr = 0.20, 0.80, and 1.64, the CFDShip-lawesion 6.2.5 predictions
show good agreement with the experimental datdadtaiin the literature. In this study,
the CFDShip-lowa version 6.2.5 results are analyaetiscuss effects of the free
surfaces on the turbulent flows around a circujéinder. The numerical results are
compared with those of the two-phase flows obtalmelawamura et al. (2002) and Suh
et al. (2011) and those of the single-phase flotained by 5E5-CS.

Fig. 4.12 and 4.13 show contours of the instantam@ertical vorticity on the free
surface and three horizontal planes at Fr = 0.200a80, respectively. The CFDShip-
lowa version 6.2.5 results are compared with tludgeFDShip-lowa version 6.2
obtained by Suh et al. (2011). The similar trerals loe observed between CFDShip-
lowa version 6.2.5 and CFDShip-lowa version 6.2baéth Fr = 0.20 and 0.80, organized
vortex shedding, which is similar to that from afinitely long circular cylinder in a
single-phase flow, can be clearly observed in gepdlows at z = -3.5. In the deep
flows, CFDShip-lowa version 6.2.5 and CFDShip-loresasion 6.2 show no significant

differences in the characteristics of the vortesdshng in spite of Fr because of the same
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Re. This indicates negligibly small effects of thee surface on the vortex shedding in
the deep flows. As the free surface is approadiedarge-scale periodic vortex
shedding is attenuated and more vortices with ematlales appear. The shear layers
separating from the two sides of the cylinder iatemwith each other until at z = -1.
While the shear layers still interact at the d€gtk -0.5) near the free surface at Fr =
0.20, they digress from each other at Fr = 0.80th@rfree surfaces, the shear layers are
deviating at both Fr. Large-scale vortex sheddeng still be observed on the free surface
at Fr = 0.20. On the other hand, the organizectlamale vortex shedding in the deep
flow is no longer presented on the free surfadérat 0.80. Compared with the free
surface at Fr = 0.20, more small-scale vorticeggareerated in the larger region of the
free surface at higher Fr = 0.80. In addition,ikeklace vortices exist on the front side
of the cylinder on the free surface at Fr = 0.80.

For Fr = 0.20 and 0.80, the mean flow results aedlable from Suh et al. (2011)
and Kawamura et al. (2002) for the comparison psgpdhe effects of the free surfaces
on the mean flows in the results of 2.7E-0.20 ad&2.80 are discussed by comparing
with those LES results in the literature. Meanatmevise velocity and vorticity on the
vertical planes at Fr = 0.20 are compared betwdddShip-lowa version 6.2.5 and the
numerical results of Kawamura et al. (2002) and &udd. (2011) in Fig. 4.14 and 4.15.
Negative streamwise velocity can be observed al)=and does not exist at x = 2.5.
This indicates the streamwise locations at x =ahd@ 2.5 are inside and outside of the
recirculation region at Re = 2.7xX.@espectively. The streamwise velocity contours
show the wider wake at x = 2.5 than that at x = At(both x = 1.0 and 2.5, the wake
width is slightly increased near the free surfadeereas the width is almost constant at
the deeper level than about 0.5D. Small streamwvastices can be seen only near the
free surface at Fr = 0.20. The streamwise vortazs the free surface induce the
outward transverse velocity which results in theasated region expanded in the

transverse direction on the free surface (Suh.e2@l1). Fig. 4.16 clearly shows the

www.manaraa.com



104

higher transverse velocity and the slightly wideparated region on the free surface than
those at z = -3.5.

For steady flow of constant density, the transpquation of the streamwise
vorticity can be written as Eq. (4.2). In Eq. (49), Q,, and®;, are the streamwise,
transverse, and vertical components of the meaticitgy respectively. Term (A)
represents the material derivative of the meamstvase vorticity. The first term of term
(B) is the vorticity amplification by the streamwistretching, while the other terms
provide vortex-line bending effects. Term (C) sugjgehe vorticity damping by the
viscous diffusion. Terms (D), (E), and (F) are vioticity production by inhomogeneity

in the Reynolds stress field.
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As show in Fig. 4.17, the y and z components oht@) and term (E) in Eq.
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(4.2) are the dominant source terms for the meaaamsiwise vorticity at Fr = 0.20.
However, the y and z components of term (B) areel@d because they have the same
magnitudes with the opposite signs. Hence, the {&)ns the main mechanism to
generate the mean streamwise vorticity on thedvetace at Fr = 0.20. These trends are
similar to those at Fr = 0.80, as shown later, @ntsistent with those observed by Suh et

al. (2011).
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The predictions of 2.7E4-0.80 also show the simikands to those in the
numerical results obtained by CFDShip-lowa veréidhat the same Re and Fr (Suh et
al., 2011). Fig. 4.18 and 4.19 compare the meaasiwise velocity and vorticity
components at Re = 2.7X1énd Fr = 0.80 between the CFDShip-lowa versiorb6.2
predictions and the numerical results of Suh €28111). At x = 1.0, the contours of the
streamwise velocity show that the width of the wadaeases significantly near the free
surface, whereas the width is almost constantardéep flow. It is obvious by
comparing the streamwise velocity at x = 1.0 betwiee= 0.20 and 0.80 that the wake
width is much larger at the higher Fr = 0.80 wkhik same Re. Since the plane at x = 1.0
is inside the recirculation region at this Re, riegamean streamwise velocities are
observed in the deep flow and near the free surfdo®ever, there is no negative
streamwise velocity at around z = -1.5. Hencewtiath of the recirculating zone
increases as the free surface is approached. A.%,a negative streamwise velocity is
still observed near the free surface, whereasdleity in the deep flow increases to
positive values, which indicates the slower velpogicovery in the wake on the free
surface. On this vertical plane, the width of thekeris increased substantially near the
free surface and slightly in the deep flow. Theroaest wake region locates at a slightly
lower position (z = -1.1) on this vertical plandig observation is consistent with
Kawamura et al. (2002) and Suh et al. (2011).

The pair of strong counter-rotating streamwiseigegt is responsible for the
increased wake width and the large outward trassveelocity near the free surface. At
x=2.5, streamwise vortices are only seen nearrteedurface. The locations of the mean
streamwise vortices and the shapes of the wakbkeofrde surface correlate well,
indicating the effect of secondary swirl of the tiwal structures on the wake structures
(Kawamura et al., 2002; Suh et al., 2011). The niarsverse vorticity component is
significant near the free surface only. Since tlagnitude of the mean transverse

vorticity is larger than that of the mean streanawisrticity on the free surface between
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the two surface-parallel vorticity components, tiean transverse vorticity is more
responsible for the fluctuations of the free sugfé8uh et al., 2011). The vertical
distributions of the mean vertical vorticity compgon in the deep flow and the air region
are due to the Karman vortex shedding. Its distidounear the free surface is inclined
outward in the transverse direction, due to thevaud mean transverse velocity
generated near the free surface. The locationeohith magnitude vorticity matches
with the high gradient region of the mean strearawisocity.

Fig 4.20 and 4.21 compare magnitudes of the Regnuddmal stresses and the
shear stress at Re = 2.72H0d Fr = 0.8 between the predictions of 2.7E-@@the
numerical results by CFDShip-lowa version 6.2 (8uhl., 2011). For the streamwise
Reynolds normal streds,, = u'u’, the peak values at x = 1 are produced near e fr
surface and along the separation region in the tleepvhere the mean streamwise
velocity is recirculated. LargeyRis observed where the mean streamwise velocity
gradients are very high, which indicates a regibhigh turbulent kinetic energy
production. In addition, R is increased locally near the edge of the sepératgon on
the free surface, due to the increased velocitgligra by the outward transverse velocity
generation. Relatively uniform distribution ofRnside the separated region at x = 1 is
probably owing to the enhanced mixing by the comgleeamwise vorticity inside the
separated flow region.

For the transverse Reynolds normal stiggs= v'v', one or two peaks are
observed in the deep flow near the symmetry pl&he peaks are due to the vortex
shedding by the interaction of the shear layeraisging from both sides of the cylinder.
The behavior of R near the free surface shows similar trends toetldR.«. In the
separated flow region, fRdecreases as it approaches the free surface.

The vertical Reynolds normal stré&s, = w'w’ has a relatively large magnitude
on the free surface and is directly related withftlee surface fluctuations, which result

in the significant streamwise vorticity and thewatd transverse velocity on the free
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surface. The feature of,Rnhear the free surface is very similar to that gf Rdditional
peaks are observed near the recirculation zorteeideéep flow. B in this deep region is
also owing to the up- and downward flow through\heex centers during the periodic
vortex shedding.

On the free surface, the Reynolds shear sRgss- u'v’ has an insignificant
magnitude in the wake region because the sheaslfigen both sides deviate from each
other and the interaction between them is restdaivia et al. (2008) also observed the
decreased values offon the free surface.

Fig. 4.22 — 4.24 compares the dominant source tésntee mean vorticity
components at x = 1.0 between CFDShip-lowa verSi@r(Suh et al., 2011) and
CFDShip-lowa version 6.2.5. For the mean streamwasgcity, the y and z components
of term (B) by the vortex bending are of a simitzeignitude, but of opposite signs, so the
total effect of them is canceled out. The remainerg (E) is the main production
mechanism of the mean streamwise vorticity, whigans the vertical and transverse
gradients of the difference betweey Bnd R, are partly responsible for the generation
of the streamwise vorticity near the free surface presumably cause the outward
transverse velocity on the free surface.

The dominant terms for the mean transverse vortatik = 1.0 are the z
component of term (B), term (E), and term (F). Zhmomponent of term (B) is from the
bending of the vertical vorticity by the outward andransverse velocity generation near
the free surface. In other words, the swirling motof the vortex shedding and shear-
layer instability in the deep flow is changed te thee surface fluctuations via vortex
bending.

In the deep flow, term (F) is the dominant sourretlie mean vertical vorticity.
Hence, the shear stress is primarily responsibléhfo Karman vortex shedding and
shear-layer instability in the deep flow. The doamhterms for the mean vertical

vorticity near the free surface are the z componétgrm (B) and term (E), which are
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the vortex stretching of the vertical vorticity aftdm the anisotropy between the
streamwise and transverse Reynolds normal stragesggctively.

In order to investigate the effect of the free scefon the flow at high Re =
4.58x1G and high Fr = 1.64, the numerical results of CFipSbwa version 6.2.5
(4.58E5-1.64) are analyzed by comparing with thadge single-phase flow at the
similar Re = 5x10(5E5-CS). Fig. 4.25 compares the instantaneougaevorticity on
the free surface of 4.58E5-1.64 with that on aZwrial plane of 5E5-CS. Compared to
the single-phase flow at similar Re = 58 1fore small-scale vortices are generated over
a large range of the wake on the free surface. Manyces are located on the bow wave
and depressions regions. In addition, more smalkesgortices are generated on the free
surface in the further downstream direction andraskned to the more outward
transverse direction at higher Fr, as shown in &2, 4.13, and 4.25.

Fig. 4.26 — 4.28 compare the mean flows betweenG&%and 4.58E5-1.64. Fig.
4.27 shows the results of 4.58E5-1.64 on the cuplaae which is 0.22D lower than the
mean free surface. The plane near the free suidad@/ays inside the water phase. On
the plane, the mean vorticity components show ammilagnitudes to those in the single-
phase flow at Re = 5x¥@hown in Fig. 4.26. On the other hand, the meaticed
velocity shows much higher magnitude than thatEB-&£S. The magnitude correlates
with the mean free surface elevations shown in 429, which includes very high bow
wave, a pair of large symmetric depressions, agl &levations in the wake. In addition,
the transverse velocity in the wake presents nenzagnitudes in the further
downstream direction and the more outward transveirection.

The predictions of 2.7E4-0.20 and 2.7E4-0.80 shHwat the streamwise vorticity
and the resulting outward transverse velocity gaeernear the free surface are primarily
responsible for attenuation of the periodic vodbrdding, deviation of the separated
shear layers, and the increased wake widths, wdrelzonsistent with the observation of

Kawamura et al. (2002) and Suh et al. (2011). Teamflow on the free surface
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computed by 4.58E5-1.64 also shows the high madgstof the streamwise vorticity and
the transverse velocity. In the wake region, th&itpe streamwise vorticity induces the
negative transverse velocity, while the negativeioiby results in generation of the
positive velocity. The transverse velocity is indrand outward in the near and far wake
region, respectively. These features of the trarsgveelocity cause the wake whose
width is slightly shrunk near the cylinder and dabsially expanded in the far region.
The mean streamwise velocity contours in Fig. 489&nd the streamlines in Fig. 4.29
show the characteristics of the wake width clearlye mean streamwise velocity
contours also present the small recirculation regiside the cavity structure of the free
surface. The mean vertical velocity contours cateelell with the deformations of the
free surface including the high bow wave on thengasn side of the cylinder, the cavity
structure immediately behind the cylinder, the éasgmmetric depressions behind the
cavity, and the Kelvin waves. In addition, the mé&amsverse vorticity on the free
surface shows the large magnitudes inside the synendepressions.

Reynolds stresses are compared between 5E5-CSE8tb41.64 in Fig. 4.30 —
4.32. Ry on the curved plane 0.22D below the free surfaoevs the similar peak
magnitude to that in the single-phase flow at Fex£(, whereas R has the lower peak
than that of 5E5-CS. Rnear the free surface shows the higher peak heanitcular
cylinder presumably due to the free surface fluitug inside the deep cavity structure.
All shear stress components in the near wake rggiesent similar magnitudes to those
of 5E5-CS. The shear stresses near the free swafsedave nonzero magnitudes in the
far wake region, which is related to the free steffluctuations.

The Reynolds stress contours on the free surfatelate well with the
deformations of the free surface because the sges®e related to the free surface
fluctuations. The normal components have the peagnitudes near the center plane of
the wake. The peak of,Ris located near the downstream edge of the canitthe free

surface where the separated shear layers intasashiown in Fig. 4.29.,Ralso shows
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the peak near the edge of the cavity structure evtier free surface fluctuations are
presumably large. Rand R, have the larger magnitudes than that @f Rn the free
surface, the Reynolds shear stress componentgim@agenaller magnitudes than the
normal components. Yu et al. (2008) and Suh €R@ll1) also observed the similar trend
of Ry, on the free surface at Re = 2.70%&@d Fr = 0.80.

The source terms for the mean streamwise vortiagyshown in Eq. (4.2), are
compared between 5E5-CS and 4.58E5-1.64 in Fi§.44835. As shown in Fig. 4.34,
the mean streamwise vorticity near the free suri@deminantly produced by term (D),
(E), and (F) which are due to the inhomogeneitthenReynolds stress field. This trend is
similar to that in the single-phase flow at Re @6%shown in Fig. 4.33.

It is noted that term (E) and (F) on the free stefhave the similar magnitude but
the opposite signs as well as the y and z compsménerm (B). Therefore, term (D) and
the x component of term (B) are the dominant soteoas for the mean streamwise
vorticity on the free surface. The difference o tiradients of two Reynolds shear
stresses (& and R;) and the streamwise vortex stretching are primaesponsible for
generation of the mean streamwise vorticity onftee surface.

Fig. 4.36 — 4.38 compare the source terms for the@mtransverse vorticity
between 5E5-CS and 4.58E5-1.64. Similar to the nsg@amwise vorticity, the terms
due to the Reynolds stress gradients are the magmamism to generate the mean
transverse vorticity near the free surface, as shiavrig. 4.37.

The source terms for the mean transverse voriieitthe free surface also show
the similar characteristics to those of the soteces for the mean streamwise vorticity.
Since the term (E) and (F) have the similar magieisubut the opposite signs as well as
the y and z components of term (B), the x compoonéterm (B) and term (D) are
mainly responsible for generation of the mean trarse vorticity on the free surface.

The x component of term (BR«0V/0x, is produced mainly by the strong streamwise
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vorticity on the free surface, while term (D) igttifference of the gradients of two
Reynolds shear stressesy(Bnd Ry).

Fig. 4.41 — 4.43 compare the source terms for tbemvertical vorticity between
5E5-CS and 4.58E5-1.64. As shown in Fig. 4.42ntlean vertical vorticity near the free
surface is generated mainly by the production tetoesto the Reynolds stress gradients,
which is similar to other vorticity components. Theomponent of term (B) shows the
high magnitude in the shear layers because ofttbegsvertical vorticity, whereas other
components of term (B) have smaller magnitudessé@lfieatures are similar to those in
the single-phase flow at Re = 5*{BE5-CS).

On the free surface, the source terms for the mesgical vorticity show the
similar characteristics to those for other vorji@omponents. The y and z components of
term (B) have the similar magnitudes with the ojecsigns, so the dominant terms in
the transport equation of the mean vertical vdstiare the x component of term (B) and
the terms due to the Reynolds stresses. The x aoenpof term (B)Q«0W/oX, is
produced mainly by the strong mean streamwiseartyribn the free surface.

4.3 Summary

CFDShip-lowa version 6.2.5 has been applied tdltves past a circular cylinder
piercing the free surfaces vertically in order $sess the accuracy of the coupled
orthogonal curvilinear/Cartesian grid solver in gw@ulation of the flows with free
surfaces. The numerical simulations have been paée for the two-phase turbulent
flows past a surface-piercing circular cylinde(Re, Fr) = (2.7x1% 0.20), (2.7x10
0.80), and (4.58xP01.64) due to availability of several detailedulesfrom both
experimental and numerical studies in the litekatlihe effects of the free surfaces on
the vortex shedding and the separated regionsdlasédeen analyzed by comparing the
CFDShip-lowa version 6.2.5 results with the LESuhessin the literature and those of the

single-phase flow at the similar supercritical R&x4 @, i.e., 5E5-CS in Chapter 3.
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For the low (= 0.20) and medium (= 0.80) Fr cas#d)Ship-lowa version 6.2.5

RMS to those obtained by the other numerical studies,

predicted the similar £and G
which are up to 51% lower than the experimentah dthe single-phase flow at the
same Re.

CFDShip-lowa version 6.2.5 appropriately capturezlfeatures of the
instantaneous free surfaces for all Fr, which heevs in the experimental data and the
numerical results. The CFDShip-lowa version 6.2dgltions showed good agreement
with the experimental and numerical results in ®eohthe profiles of the velocity and
free surfaces and the variation of free surfaceagiens by Fr.

In the study of the effects of free surfaces, CRp3bwa version 6.2.5 showed
the similar results to those obtained by the pasterical studies using LES for Fr = 0.20
and 0.80. The organized vortex shedding observéikideep flows is attenuated on the
free surface, and many vortices with smaller scateggenerated. On the free surface, the
shear layers separating from the two sides of yhieder digress, and the wake is
substantially expanded in the transverse directibhe streamwise vorticity and the
resulting outward transverse velocity, which arentygoroduced by the vertical and
transverse gradients of the difference betwegraRd R,, are primarily responsible for
the deviation of the shear layers and the largeewakths. These trends of the vortex
shedding, deviating shear layers, and the expawd&d on the free surface are more
prominent in the flow at Fr = 0.80 than that at=F3.20.

The numerical results of CFDShip-lowa version 6&.Re = 4.58x10and Fr =
1.64 have been compared with those of the singise@How at similar Re = 5x1@o
analyze the effects of the free surface on thedlatthe high Re and Fr. Compared to the
single-phase flow at similar Re, more small-scalgiges are generated over a large
range of the wake on the free surface at Fr = Mgy vortices are located on the bow
wave and depressions regions. While the mean utgrtiear the free surface show

similar trends to those in the single-phase fléwe, mean velocity correlates with the
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mean free surface elevations. The source termthéovorticity near the free surface are
mainly produced by the Reynolds stress gradierits.riiean flow on the free surface at
Fr = 1.64 shows the high magnitudes of the streamworticity and the transverse
velocity, which are responsible for the attenuatbperiodic vortex shedding. The
difference of the gradients of two Reynolds shéasses and the streamwise vortex
stretching are the main mechanism for generatidghefnean streamwise vorticity on the
free surface. In addition, the source terms dubdastrong streamwise vorticity mainly

generate both transverse and vertical vorticeheriree surface.
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Table 4.1 Conditions for CFDShip-lowa version 6.&rbulations of two-phase
turbulent flows

Grid resolution
Case Re Fr Domain size
NXxNnyZ erNexNZ
2.7E4-0.20 0.20 | "10=x/D<15
2.70x1d -10<y/D <10 | 264x264%x128 28x128x128
2.7E4-0.80 0.80 4<2ID<2
-15<x/ID<42
4.58E5-1.64 4.58x1G8 | 1.64 | -20< y/D <20 | 336x328%x128 28x128x128
-4<z/D<?2
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Table 4.2 Drag coefficients and RMS of lift fluctisas of two-

hase turbulent flows

Case Fr Re S C RMS
Experiment - 1.200 0.450
Kawamura et al. (2002) 1.120 0.320
(E) (-6.67%) | (-28.9%)
0.20
2.7E4-0.20 1.104 0.324
(E) (-8.00%) | (-28.0%)
Kawamura et al. (2002) 2.70x1d | 0.970 | 0.240
(E) (-19.2%) | (-46.7%)
Suh et al. (2011) 0.984 0.220
0.80
(E) (-18.0%) | (-51.1%)
2.7E4-0.80 0.985 0.219
(E) (-17.9%) | (-51.3%)
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Figure 4.1 Time histories of the drag and lift dméénts. Dotted lines are the running
mean of the drag coefficients: (a) 2.7E4-0.20;2E4-0.80
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Figure 4.2 FFT of lift coefficients: (a) 2.7E4-0;40) 2.7E4-0.80
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Figure 4.3 Instantaneous free surfaces aroundithdar cylinder
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Figure 4.4 Instantaneous free surfaces in the Wwekéend the circular cylinder
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Figure 4.6 Transverse profiles of the mean fretasarelevations at Re = 2.7514nd Fr
=0.20
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Figure 4.7 Transverse profiles of the mean fretasarelevations at Re = 2.7514nd Fr
=0.80
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Figure 4.8 Transverse profiles of the mean fretasarelevations at Re = 4.58%%dnd
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Figure 4.9 Mean free surface around the cylind&et 2.7x16and Fr = 0.80: (left
panel) elevations; (right panel) RMS of the fredfae fluctuations
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Figure 4.10 Vertical profiles of the mean streananislocity at Re = 2.7xf@nd Fr =
0.80
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Figure 4.11 Pressure distributions on the cylirmigface in the deep flow region
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Figure 4.12 Instantaneous vertical vorticity at=R2.7x1d and Fr = 0.20 computed by
CFDShip-lowa version 6.2 (Suh et al., 2011) (Ietuenn) and CFDShip-lowa version
6.2.5 (right column): (a) on the free surface;4l3 -0.5; (c) z = -1; (d) z = -3.5. Contour
interval is 1.2.
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Figure 4.13 Instantaneous vertical vorticity at=R2.7x1d and Fr = 0.80 computed by
CFDShip-lowa version 6.2 (Suh et al., 2011) (Ietuenn) and CFDShip-lowa version
6.2.5 (right column): (a) on the free surface;4l3 -0.5; (c) z = -1; (d) z = -3.5. Contour
interval is 1.2.
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\

Figure 4.14 Mean streamwise velocity on verticahels at Re = 2.70xi@nd Fr = 0.2:
(left column) Kawamura et al. (2002); (right colun@FDShip-lowa version 6.2.5.

Contour interval is 0.1.
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Figure 4.15 Mean streamwise vorticity at x = 1.®Rat= 2.7x10and Fr = 0.2: (left
panel) CFDShip-lowa version 6.2 (Suh et al., 20{right panel) CFDShip-lowa version
6.2.5. Contour interval is 0.5.

www.manharaa.com




131

0.5
0.4
0.3
0.2
0.1

-0.1
-0.2
0.3
-0.4
-0.5

Figure 4.16 Mean transverse velocity computed at R&Zx1¢ and Fr = 0.2: (a) on free
surface; (b) z =-3.5
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Figure 4.17 Dominant source terms for the mearastvése vorticity at x = 1.0
computed at Re = 2.7x1@nd Fr = 0.2: (a) y component of term (B); (bJomponent of
term (B); (c) term (E)
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Figure 4.18 Mean flow at x = 1.0 computed at Re?<20 and Fr = 0.8 by CFDShip-
lowa version 6.2 (Suh et al., 2011) (top) and CFP3$&wa version 6.2.5 (bottom): (a)
streamwise velocity with interval 0.2; (b) strearsgvvorticity with interval 0.5; (c)
transverse vorticity with interval 1.0; (d) verticerticity with interval 1.0
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Figure 4.19 Mean flow at x = 2.5 computed at Re?x20" and Fr = 0.8 by CFDShip-
lowa version 6.2 (Suh et al., 2011) (top) and CHp3bwa version 6.2.5 (bottom): (e)
streamwise velocity with interval 0.2; (f) streamseivorticity with interval 0.5; (g)
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Figure 4.20 Reynolds stresses at x = 1.0 computBé & 2.7x10and Fr = 0.8 by
CFDShip-lowa version 6.2 (Suh et al., 2011) (toapj &FDShip-lowa version 6.2.5
(bottom): (a) R« with interval 0.025; (b) B with interval 0.025; (c) B with interval
0.01; (d) Ry with interval 0.01
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Figure 4.21 Reynolds stresses flow at x = 2.5 cdetpat Re = 2.7xftand Fr = 0.8 by
CFDShip-lowa version 6.2 (Suh et al., 2011) (topj &FDShip-lowa version 6.2.5
(bottom): (e) R« with interval 0.025; (f) R, with interval 0.025; (g) B with interval
0.01; (h) Ry with interval 0.01
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Figure 4.22 Dominant source terms for the mearasivése vorticity at x = 1.0
computed at Re = 2.7xi@nd Fr = 0.8 by CFDShip-lowa version 6.2 (Suhle2811)
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Figure 4.23 Dominant source terms for the mearstranse vorticity at x = 1.0 computed
at Re = 2.7x1band Fr = 0.8 by CFDShip-lowa version 6.2 (Suhl.e2811) (top) and
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Figure 4.24 Dominant source terms for the meanocatnorticity at x = 1.0 computed at

Re = 2.7x16and Fr = 0.8 by CFDShip-lowa version 6.2 (Suhl.e2811) (top) and
CFDShip-lowa version 6.2.5 (bottom): (g) term () z component of term (B); (i) term

(E)
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Figure 4.25 Instantaneous vertical vorticity congoliby CFDShip-lowa version 6.2.5:
(a) on the free surface at Re = 4.58%a0d Fr = 1.64; (b) on a horizontal plane at Re =
5x1(@. Contour interval is 1.2.
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Figure 4.26 Mean flows computed at Re = 5%18) streamwise velocity; (b) transverse
velocity; (c) vertical velocity; (d) streamwise wigity; (e) transverse vorticity; (f)
vertical vorticity
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Figure 4.27 Mean flows on the curved plane whidb.22D lower than the mean free
surface computed at Re = 4.58%#0d Fr = 1.64: (a) streamwise velocity; (b) trarse
velocity; (c) vertical velocity; (d) streamwise wigity; (e) transverse vorticity; (f)

vertical vorticity
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Figure 4.28 Mean flows on the free surface compate®le = 4.58x10and Fr = 1.64: (a)
streamwise velocity; (b) transverse velocity; (ejtical velocity; (d) streamwise
vorticity; (e) transverse vorticity; (f) verticabwticity
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Figure 4.29 Elevations and streamlines on the nreansurface
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Figure 4.30 Reynolds stresses computed at Re =*5¢e)(R.; (b) Ry (€) Rz (d) Ryy;
(e) Rz (f) Ryz
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Figure 4.31 Reynolds stresses on the curved pléanghvws 0.22D lower than the mean
free surface computed at Re = 4.58%a0d Fr = 1.64: (a) R (b) Ry (€) Rz (d) Ryy;
(e) Rz (f) Ryz
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Figure 4.32 Reynolds stresses on the free surfavputed at Re = 4.58x1@nd Fr =
1.64: (a) Ry; (b) Ry; (€) Rz (d) Ry; (€) R () Ry,
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Figure 4.33 Source terms for the mean streamwigéitg computed at Re = 5x10(a)
x component of term (B); (b) y component of tern); (@) z component of term (B); (d)
term (D); (e) term (E); (f) term (F)
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Figure 4.34 Source terms for the mean streamwigeiy on the curved plane which is
0.22D lower than the mean free surface comput&eat 4.58x10and Fr = 1.64: (a) x
component of term (B); (b) y component of term (();z component of term (B); (d)

term (D); (e) term (E); (f) term (F)
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Figure 4.35 Source terms for the mean streamwidecity on the free surface computed
at Re = 4.58x10and Fr = 1.64: (a) x component of term (B); (loynponent of term
(B); (c) z component of term (B); (d) term (D); teym (E); (f) term (F)
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Figure 4.36 Source terms for the mean transvergiitp computed at Re = 5x30(a) x
component of term (B); (b) y component of term (@);z component of term (B); (d)
term (D); (e) term (E); (f) term (F)
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Figure 4.37 Source terms for the mean transvergewy on the curved plane which is
0.22D lower than the mean free surface comput&eat 4.58x10and Fr = 1.64: (a) x
component of term (B); (b) y component of term (@);z component of term (B); (d)
term (D); (e) term (E); (f) term (F)
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Figure 4.38 Source terms for the mean transvergewy on the free surface computed
at Re = 4.58x10and Fr = 1.64: (a) x component of term (B); (lWoynponent of term
(B); (c) z component of term (B); (d) term (D); teym (E); (f) term (F)
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Figure 4.39 Source terms for the mean verticalisitytcomputed at Re = 5x10(a) x

component of term (B); (b) y component of term (@);z component of term (B); (d)
term (D); (e) term (E); (f) term (F)
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Figure 4.40 Source terms for the mean verticalieityton the curved plane which is
0.22D lower than the mean free surface comput&eat 4.58x10and Fr = 1.64: (a) x
component of term (B); (b) y component of term (();z component of term (B); (d)

term (D); (e) term (E); (f) term (F)
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Figure 4.41 Source terms for the mean verticalicityton the free surface computed at
Re = 4.58x10and Fr = 1.64: (a) x component of term (B); (loynponent of term (B);
(c) z component of term (B); (d) term (D); (e) tefl); (f) term (F)
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CHAPTER 5
CONCLUSION AND FUTURE WORK

The objective of the current study is developméra coupled orthogonal
curvilinear/Cartesian grid solver. The solver regsia thin structured boundary layer
grid and a non-uniform Cartesian grid to resolhelitbundary layer on a solid surface
and the flow region away from the surface, respebti The boundary layer grid is thin
to keep its own orthogonality. Flows inside théhogonal boundary layer and Cartesian
background grids are solved by different CFD sdwehich are coupled by an overset
grid method. In the overset grid method, the flawables are interpolated from one grid
block to another through the interface betweerbthendary layer and Cartesian
background grids. SUGGAR code writes the grid dontannectivity information into a
file that identifies grid points necessary for theerset grid interpolation. In order to
satisfy mass conservation across the overlappmigmethe pressure Poisson equations
and the overset interpolation equations are encesaglfrom both of the solvers and
solved simultaneously by an iterative method.

Accuracy of the coupled orthogonal curvilinear/@aian grid solver was
evaluated in terms of flows past circular cylindeesause the orthogonal boundary layer
grids can be generated easily due to its simpiadytal shape. In addition, many results
about the circular cylinder flows are availablehe literature for the comparison
purpose, which have been obtained from the expataheneasurements or the numerical
simulations. In this study, numerical simulationsrgvalso performed by the original
orthogonal curvilinear and Cartesian grid solversnder to obtain the benchmark data to
compare with the results of the coupled orthogeonalilinear/Cartesian grid solver.

The coupled orthogonal curvilinear/Cartesian galyer predicted a pair of the
symmetric counter-rotating vortices and periodieran vortex shedding in the laminar

flows at Re = 40 and 200, respectively. The nunaériesults of the mean flow
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parameters, such as the drag coefficient, aread ggreement with the experimental
data and numerical results in the literature. Tdwgpbed orthogonal curvilinear/Cartesian
grid solver also predicted the vorticity magnitedel pressure distributions on the
cylinder surface 10% closer to the numerical resulthe literature than the original
Cartesian grid solver with the same Cartesian gilids indicates that the near-wall
region is resolved properly by the boundary lay&syfor the coupled orthogonal
curvilinear/Cartesian grid solver developed in stigdy.

At the subcritical Re = 3900, the coupled orthodanavilinear/Cartesian grid
solver reproduced the long shear layers separfittngboth sides of the circular cylinder
and the Karman vortices interacting with the vaitielocity component. The solver
predicted the mean flow parameters and the wakidgean good agreement with the
experimental and numerical results in the literatim the study of the effects of the
vertical grid resolution, the coarse grid resulltsvged better agreement with the
experimental data, whereas the results given bfiriee grids agreed better with the LES
results in the literature. These trends with thetie@ grid resolution were due to the
earlier transitions of the shear layers to turbegeoccurring in the experiments and the
coarse grid simulation.

Numerical simulations were performed by the couplgtdogonal
curvilinear/Cartesian grid solver for the flowstla¢ supercritical Re = 5x3@nd 1x18
in order to demonstrate the performance of theesotvthe turbulent flows at very high
Re. The numerical results were in good agreemehttivé experimental data in the
literature. This study also showed the differeawflcharacteristics between the current
supercritical and subcritical Re. Much delayed s&fans of the boundary layers were
predicted at the supercritical Re, which causedhtreower wakes and the shorter
recirculation regions than those at the subcrifal The features of surface pressure
corresponded to the separations. The main mechdaigenerate the vertical vortices

was the gradients of the Reynolds stresses angkttieal stretching effect.
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The coupled orthogonal curvilinear/Cartesian galver was applied to the flows
past a circular cylinder piercing the free surfagedically at (Re, Fr) = (2.7x£00.20),
(2.7x1d, 0.80), and (4.58x£01.64). It aimed at evaluating the accuracy ofsibleer in
the simulation of the flows with free surfaces. Thag coefficients and the lift
fluctuations were predicted very close to the nucagresults in the literature. The solver
also captured the features of the instantaneousnaaa free surfaces for all Fr, which
were shown in the experimental and numerical result

The solver developed in this study showed the amtiends in its own numerical
results to those observed by the past numericdleswsing LES for Fr = 0.20 and 0.80.
The organized vortex shedding observed in the deeys is attenuated on the free
surface, and many vortices with smaller scaleganerated. On the free surface, the
shear layers separating from the two sides of ylieder deviate from each other, and the
wake is substantially expanded in the transvensetions. The streamwise vorticity and
the resulting outward transverse velocity, whioh @ainly produced by the vertical and
transverse gradients of the difference betweetrémsverse and vertical Reynolds
normal stress components, are primarily respon$iblthe deviation of the shear layers
and the large wake widths. These trends of theexatedding, deviating shear layers,
and the expanded wake on the free surface are pnom@nent in the flow at Fr = 0.80
than that at Fr = 0.20.

The numerical results at Re = 4.58Xa0d Fr = 1.64 were compared with those
of the single-phase flow at similar Re = 5%16 analyze the effects of the free surface on
the flows at the high Re and Fr. Compared to thglsiphase flow at similar Re, more
small-scale vortices are generated over a larggerahthe wake on the free surface at Fr
= 1.64. While the mean vorticity near the free scefshow similar trends to those in the
single-phase flow, the mean velocity correlatehthe mean free surface elevations.
The source terms for the vorticity near the fredage are mainly produced by the

Reynolds stress gradients. The mean flow on tleedueface at Fr = 1.64 shows the high
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magnitudes of the streamwise vorticity and thesvanse velocity, which are responsible
for the attenuation of periodic vortex sheddinge Tifference of the gradients of two
Reynolds shear stresses and the streamwise vorééshsng are the main mechanism for
generation of the mean streamwise vorticity onftee surface. In addition, the source
terms due to the strong streamwise vorticity mag@perate both transverse and vertical
vortices on the free surface.

In the future work, the coupled orthogonal cungln/Cartesian grid solver will
be applied to a flow around Wigley hull. Because Wiigley hull has a simple surface
shape, an orthogonal curvilinear boundary layet griexpected to be generated easily.
The orthogonality correction term will be addedithie governing equations to apply the

solver to non-orthogonal boundary layer grids atbomore complicated shapes.
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